Srub-stroi58.ru

Сруб Строй
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коррозия цементного камня

Коррозия цементного камня

Бетоны и цементный камень, как его матричная часть, в эксплуатационных условиях подвержены коррозионному воздействию различных сред, особенно минерализованной воды в морских сооружениях (молы, причалы, эстакады со свайным основанием и железобетонным верхним строением, портовые конструкции и др.), минеральной кислоты при эксплуатации резервуаров, башен и других сооружений химической промышленности. На бетон оказывают коррозионное воздействие органические кислоты и биосфера, особенно при работе сооружений в торфяных грунтах, на предприятиях пищевой промышленности. Негативное влияние могут оказывать на состав и структуру цементного камня в бетонах щелочная среда, пресная вода, особенно водные растворы электролитов. В индустриальных районах коррозионное влияние на бетонные конструкции оказывают газы, например сернистые, сероводород, хлористый водород, аэрозоли солей, например морской воды и др. Агрессивное воздействие оказывают также твердые, в основном высокодисперсные вещества, способные образовывать во влажных условиях прослойки из истинных и коллоидных растворов. Кроме химических реакций при контакте со средой возможны физические сорбционные процессы с поглощением из среды поверхностно-активных веществ (ПАВ), например серосодержащих полярных смол из нефтепродуктов, с физическим нарушением сплошности контактов в структуре и ускорением развития дефектов.

Это выветривание, растворение, разрушение вследствие температурных колебаний характерных для всех видов горных пород.

Коррозии растворения носит физико-химический характер.

Агрессивными по отношению к цементному камню являются все кислоты и многие соли.

Этот вид коррозии имеет место чаще всего, а разрушение происходит наиболее интенсивно. Самым уязвимым веществом в цементном камне является известь. Однако связывание извести (скажем за счет SiO2) еще не исключает коррозии, поскольку она может восстанавливаться за счет отступления от гидратов кальция.

Кислоты и некоторые соли вступают в реакцию с Са(ОН)2 и образуют новые соединения, либо легко растворимые в воде, либо непрочные рыхлые, либо кристаллизующиеся со значительным

Изменением объема. Иногда это все происходит одновременно.

Все кислоты разрушают портландцементный камень

Са(ОН)2 + НСl = CaCl + 2 H3O

Са(ОН)2 + H3SO4 = CaSO4 + 2H3O

Чем выше концентрация извести в порах цементного камня, тем выше скорость выщелачивания. Низкоосновные гидраты кальция имеют меньшую равновесную растворимость. Известь связывается, а основность понижается в тех случаях, когда в цемент вводятся активные кремнеземистые добавки, а при высоких температурах и кварцевый песок.

Таким образом, более стойкими против коррозии выщелачивания являются низкоосновные цементы (пуццолановые, шлакопесчанистые, БКЗ, известковокремнеземистые).

Если в окружающей цементный камень среде содержатся вещества, образующие с Са(ОН)2 малорастворимые соединения, то концентрация извести в ней будет поддерживаться на очень низком уровне.

Например, если в пластовых водах есть MgSO4(МАГНИЯ СУЛЬФАТ), то он вступая во взаимодействие с Са(ОН)2 по реакции:

Са(ОН)2 + MgSO4 + 2Н2О = Mg(ОН)2 + Са SO4 2Н2О

Mg(ОН)2(ГИДРОКСИД МАГНИЯ) и гипс имеют очень низкую растворимость в воде. Mg(ОН)2 сам по себе представляет рыхлое аморфное вещество. Если подобный процесс будет продолжаться — цементный камень разрушится. Это магнезиальная коррозия. Подобное действие но более слабое, оказывает и хлористый магний.

Однако, чаще всего процесс затухает по мере накопления Mg(ОН)2 (МАГНИЯ СУЛЬФАТ), и Са SO4 2Н2О в порах цементного камня кольматаций. Причем накопление этих веществ происходит тем быстрее, а уплотнение пор выше, чем выше основность цемента. Кольматация пор приводит к замедлению проникновения агрессивноного MgSO4.

Следовательно, стойкость вяжущего к этому виду коррозии понижается при введении активных минеральных добавок. Отсюда в таких средахнельзя применять облегченные цементные растворы с минеральными добавками типа диатомит, опока, тремел, пемза).

5. Углекислотная коррозия

В пластовых водах как правило присутствует то или иное количество углекислого газа. Он действует разрушающе, поскольку понижает содержание Са(ОН)2 окисляя ее сначала до СаСО3(Карбонат кальция), которая мало растворима, что будет вызывать понижение основности гидратов цемента. При поступлении новых порций СО2, СаСО3 окисляется до бикарбоната Са (НСО3)2, который хорошо растворим. При незначительной концентрации Са2 в водах процесс может затухнуть. Однако если кислота содержится в пластовом газе, то вследствие большой проницающей способности, диффузии и осмоса возможно быстрое разрушение камня. Если процесс ограничивается до СаСО3, то низкоосновные, если до Са (НСО3) 2 (гидрокарбонат кальция) — т о высокоосновные (см. ниже).

Это вид коррозии, который связан с образованием соединений кристаллизующихся с увеличением объема. Примером такой коррозии являются взаимодействие с сульфатами кальция и натрия. Известно, что гидроалюминаты кальция могут присоединять гипс и образовывать гидросульфоалюминат. Последний кристаллизуется с увеличением объема, что вызывает внутренние напряжения и разрушение цементного камня.

(3 CaO Al2O3 12H3O + 3(CaSO4 2H3O) + 13H3O =

= 3CaO Al2O3 3CaSO4 31H3O

Однако не всегда наличие гидросульфоалюмината кальция в цементном камне говорит и сульфатной коррозии. Это вещество имеется в первичной структуре цементного камня. Только увеличение количества гидросульфатоалюмината говорит о происходящей сульфоалюминатной коррозии.

Это один из распространенных на нефтяных и газовых месторождениях видов коррозии. При сероводородной коррозии наблюдается образование малорастворимых сульфидов кальция, алюминия и железа. Это приводит к понижению равновесной концентрации Са(ОН)2, Al(OH)3, Fe(OH)3, что в свою очередь вызывает разрушение гидратов кальция.

Нефть и нефтепродукты не опасны, но если в них есть нафтеновые кислоты и сульфаты, то они также разрушают цементный камень.

Этот вид коррозии изучен мало. Однако, видимо сводится в конечном итоге к какому либо химическому виду.

Читайте так же:
Как сделать цемент соотношение

Так имеется много бактерий, которые выделяют углекислоту, что повлечет углекислотную коррозию. Некоторые бактерии могут окислять сульфаты сначала до сероводорода, а затем до серной кислоты. Отсюда и характер разрушения камня.

Электрохимическая и электроосмотическая коррозии

Источник — блуждающие токи (промышленные сети). Система обсадная колонна, цементный камень — земля являются проводниками. В этой системе всегда возможен перенос ионов, отсюда возможны и электрохимическая и электроосмотическая коррозии. Следует отметить, что цементные камни, бетоны (фундаменты) обладают как правило определенным электрическим потенциалом по отношению к земле.

Разрушение цементного камня может происходить под влиянием физических факторов (насыщение водой, попеременное замораживание и оттаивание, увлажнение и высыхание и т. п.), а также при химическом взаимодействии компонентов камня с агрессивными веществами, содержащимися в окружающей среде.

Коррозия первого вида — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей (коррозия выщелачивания). При действии воды на цементный камень вначале растворяется и уносится водой свободный гидроксид кальция, образовавшийся при гидролизе C3S и C2S, содержание которого в цементном камне через 1. 3 мес твердения достигает 10. 15%, а растворимость при обычных температурах— 1,3 г/л. После вымывания свободного гидроксида кальция и снижения его концентрации ниже 1,1 г/л начинается разложение гидросиликатов, а затем гидроалюминатов и гидроферритов кальция. В результате выщелачивания повышается пористость цементного камня и снижается его прочность. Процесс коррозии первого вида ускоряется, если на цементный камень действует мягкая вода или вода под напором.

Коррозия второго вида происходит при действии на цементный камень агрессивных веществ, которые, вступая во взаимодействие с составными частями цементного камня, образуют либо легкорастворимые и вымываемые водой соли, либо аморфные массы, не обладающие связующими свойствами (кислотная, магнезиальная коррозия, коррозия под влиянием некоторых органических веществ и т. п.).

Коррозия под действием органических и неорганических кислот, быстро разрушает цементный камень. Вредное влияние оказывают и масла, содержащие кислоты жирного ряда (льняное, хлопковое, рыбий жир). Нефть, нефтяные продукты (керосин, бензин, мазут, нефтяные масла) не опасны для цементного бетона, если в них нет остатков кислот, но они легко проникают через бетон. Продукты разгонки каменноугольного дегтя, содержащие фенолы, оказывают агрессивное воздействие на бетон.

Коррозия третьего вида объединяет процессы, при которых компоненты цементного камня, вступая во взаимодействие с агрессивной средой, образуют соединения, занимающие больший объем, чем исходные продукты реакции. Это вызывает появление внутренних напряжений в бетоне и его растрескивание. Характерной коррозией этого вида является сульфатная коррозия. Сульфаты, часто содержащиеся в природной и промышленных водах, вступают в обменную реакцию с гидроксидом кальция, образуя гипс CaSO4-2H3O. Разрушение цементного камня в этом случае вызывается кристаллизационным давлением кристаллов двуводного гипса. Такая коррозия происходит при значительных концентрациях сульфатов в воде

Стойкость затвердевшего цемента

Разрушение цементного камня может происходить под влиянием физических факторов (насыщение водой, попеременное замораживание и оттаивание, увлажнение и высыхание и т. п.), а также при химическом взаимодействии компонентов камня с агрессивными веществами, содержащимися в окружающей среде.

Морозостойкость цементного камня зависит от минерального состава клинкера, тонкости помола цемента и водопотребности, необходимой для получения удобоук-ладываемой смеси. Среди минералов клинкера наименее морозостойким является СзА, максимально допустимое содержание которого в цементах для морозостойких бетонов должно составлять не более 5. 8 %. Тонкость помола может быть в пределах от 3000 до 4000 см2/г, при этом важное значение имеет наличие в цементе наряду с тонкими фракциями относительно крупных зерен, которые обеспечивают «клинкерный фонд» для самозалечивания дефектов, возникающих при попеременных воздействиях среды. Увеличение водопотребности цемента снижает морозостойкость цементного камня, так как при этом повышается его капиллярная пористость (вода в порах геля не переходит в лед даже при сильных морозах). Поэтому в морозостойких бетонах значение В/Ц принимают не более 0,4. 0,55.

Химическая стойкость цементного камня связана со скоростью и глубиной коррозионных процессов, вызываемых воздействием агрессивных газов и жидкостей на его составные части, главным образом на Са(ОН)2 и ЗСаО-•АЬОз-бНгО. Исследования, проведенные советскими учеными (А. А. Байковым, В. В. Киндом, В. Н. Юнгом, С. Д. Окороковым, В. М. Москвиным и др.), позволили установить сущность коррозии цементного камня и рекомендовать методы борьбы с ней. В. М. Москвин разделил коррозионные процессы, возникающие в цементном камне, на три вида.

Коррозия первого вида — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей (коррозия выщелачивания). При действии воды на цементный камень вначале растворяется и уносится водой свободный гидроксид кальция, образовавшийся при гидролизе C3S и C2S, содержание которого в цементном камне через 1. 3 мес твердения достигает 10. 15%, а растворимость при обычных температурах— 1,3 г/л. После вымывания свободного гидроксида кальция и снижения его концентрации ниже 1,1 г/л начинается разложение гидросиликатов, а затем гидроалюминатов и гидроферритов кальция. В результате выщелачивания повышается пористость цементного камня и снижается его прочность. Процесс коррозии первого вида ускоряется, если на цементный камень действует мягкая вода или вода под напором.

Одной из мер ослабления коррозии выщелачивания является применение цемента с умеренным содержанием C3S и выдерживание бетонных изделий на воздухе для того, чтобы на их поверхности прошел процесс карбонизации и образовалась малорастворимая корка из СаСО3. Главным же средством борьбы с выщелачиванием гидроксида кальция является применение плотного бетона и введение в цемент активных минеральных добавок, связывающих Са(ОН)г в малорастворимое соединение — гидросиликат кальция

Читайте так же:
Влагостойкий цемент для наружных работ

Коррозия второго вида происходит при действии на цементный камень агрессивных веществ, которые, вступая во взаимодействие с составными частями цементного камня, образуют либо легкорастворимые и вымываемые водой соли, либо аморфные массы, не обладающие связующими свойствами (кислотная, магнезиальная коррозия, коррозия под влиянием некоторых органических веществ и т. п.).

Кислотная коррозия возникает при действии растворов любых кислот, за исключением поликремниевой и кремнефтористоводородной. Кислота вступает в химическое взаимодействие с гидроксидом кальция, образуя растворимые соли (например, СаС12) и соли, увеличивающиеся в объеме (CaSO4-2H2O):

Са(ОН)2 + 2НС1 = СаС12 + 2Н2О Са(ОН)2 + H2SO4 = CaSO4.2H2O

Под действием кислот могут разрушаться также и гидросиликаты, гидроалюминаты и гидроферриты кальция, превращаясь в кальциевые соли и аморфные бессвязанные массы SiO2-nH2O, A12(OH)3, Fe2(OH)3.

От слабой кислотной коррозии (рН=4. 6) бетоны защищают кислотостойкими материалами (окраской, пленочной изоляцией и т. п.). При сильной кислотной коррозии (рН<4) вместо обычного бетона на портландцементе используют бетон на кислотоупорном цементе и кислотостойких заполнителях или бетон на основе полимерных связующих.

Углекислотная коррозия является разновидностью общекислотной коррозии. Она развивается при действии на цементный камень воды, содержащей свободный диоксид углерода в виде слабой угольной кислоты сверх равновесного количества. Избыточная (агрессивная) углекислота разрушает ранее образовавшуюся карбонатную пленку вследствие образования хорошо растворимого бикарбоната кальция:

СаСОз + (СО2)СВ + Н2О = Са(НСО3)2 Магнезиальная коррозия наступает при воздействии на гидроксид кальция растворов магнезиальных солей, которые встречаются в грунтовой, морской и других водах. Наиболее характерные реакции для этого вида коррозии проходят по следующей схеме:

Са(ОН)2 + MgCl2 = СаС12 + Mg(OH), Са(ОН)2 + MgSO4 = CaSO4-2H2O + Mg(OH)2

Хлорид кальция и двуводный сульфат кальция хорошо растворимы в воде и вымываются из цементного камня. К тому же двуводный сульфат кальция возникает с увеличением объема, что ускоряет появление трещин в бетоне, а также коррозию третьего вида (см. далее). Гидроксид магния малорастворим в воде, но выпадает в осадок в виде рыхлой аморфной массы, не обладающей связностью, которая также легко вымывается из бетона. Меры защиты от магнезиальной коррозии те же, что и при коррозии первого вида.

Коррозия под действием органических кислот, как и неорганических, быстро разрушает цементный камень. Вредное влияние оказывают и масла, содержащие кислоты жирного ряда (льняное, хлопковое, рыбий жир и т. п.). Нефть, нефтяные продукты (керосин, бензин, мазут, нефтяные масла) не опасны для цементного бетона, если в них нет остатков кислот, но они легко проникают через бетон. Продукты разгонки каменноугольного дегтя, содержащие фенолы, оказывают агрессивное воздействие на бетон.

Коррозия возникает и под действием минеральных удобрений, особенно аммиачных (аммиачная селитра и сульфат аммония). Аммиачная селитра, состоящая в основном из NH4NO3, действует на гидроксид кальция:

Са(ОН)2 + 2NH4NO3 + 2НаО = Ca(NO3)2 -4Н2О + 2NOa

Образующийся нитрат кальция хорошо растворяется в воде и вымывается из бетона. Из фосфорных удобрений агрессивен суперфосфат, состоящий в основном из Са(Н2РО4)2, гипса и содержащий небольшое количество свободной фосфорной кислоты.

Коррозия третьего вида объединяет процессы, при которых компоненты цементного камня, вступая во взаимодействие с агрессивной средой, образуют соединения, занимающие больший объем, чем исходные продукты реакции. Это вызывает появление внутренних напряжений в бетоне и его растрескивание. Характерной коррозией этого вида является сульфатная коррозия. Сульфаты, часто содержащиеся в природной и промышленных водах, вступают в обменную реакцию с гидроксидом кальция, образуя гипс CaSO4-2H2O. Разрушение цементного камня в этом случае вызывается кристаллизационным давлением кристаллов двуводного гипса (гипсовая коррозия). Такая коррозия происходит при значительных концентрациях сульфатов в воде,

Сульфоалюминатная коррозия возникает вследствие взаимодействия гипса с гидроалюминатом цементного камня по уравнению:

ЗСаО.А12О3.6Н2О + 3CaSO4 + (25. 26) Н2О = = ЗСаО А12О3 -3CaSO4 (31.. .32) Н2О

Образование в порах цементного камня малорастворимого трехсульфатного гидросульфоалюмината кальция (эттрингита) сопровождается увеличением объема твердой фазы примерно в 2 раза. Вследствие разрушающего действия на цементный камень и внешнее сходство кристаллов гидросульфоалюмината (в виде игл) с некоторыми бактериями его иногда называют «цементной бациллой».

Для предотвращения сульфатной коррозии использую ют плотные бетоны на специальном сульфатостойком портландцементе или других сульфатостойких цементах.

Коррозия под действием концентрированных растворов щелочей, особенно при последующем высыхании, возникает в результате образования соединений, кристаллизующихся с увеличением в объеме (например, соды или поташа при насыщении бетона едким натром или едким кали). В слабощелочной среде цементный камень не подвергается коррозии.

Защита бетона и других материалов от коррозии вызывает большие расходы. Например, при строительстве химических заводов на антикоррозионную защиту зданий и аппаратов расходуется около 10. 15% от общей стоимости строительства. Поэтому при строительстве зданий и сооружений необходимо прежде всего определить характер возможного действия среды на бетон, а затем разработать и осуществить нужные меры для предотвращения коррозии, которые в общем виде сводятся к следующему: 1) правильный выбор цемента, 2) изготовление особо плотного бетона, 3) применение защитных покрытий.

Читайте так же:
Как замешивать цемент для заливки пола

Коррозия цементного камня и способы замедления процессов разрушения камня.

Коррозию цементного камня и бетона подразделяют на три основных вида в зависимости от механизма разрушения структуры:

коррозия I вида обусловлена растворением и вымыванием некоторых его составных частей̆ (коррозия выщелачивания);

коррозия II вида обусловлена воздействием агрессивных веществ, которые, вступая во взаимодействие с составными частями цементного камня, образуют либо легкорастворимые и вымываемые водой̆ соли, либо аморфные массы, не обладающие связующими свойствами;

коррозия III вида объединяет процессы, при которых компоненты цементного камня, вступая во взаимодействиt с агрессивной̆ средой, образуют соединения, занимающие больший объем, чем исходные продукты реакции

1 вид При действии воды на цементный камень вначале растворяется и уносится водой свободный Ca(OH)2, содержание которого в цементном камне через 1-3 месяца твердения достигает 10. 15%, а растворимость при обычных температурах 1,3 г/л.

После вымывания свободного гидроксида кальция и снижения его концентрации ниже 1,1 г/л начинается разложение гидросиликатов, а затем гидроалюминатов и гидроферритов кальция. В результате выщелачивания повышается пористость цементного камня и снижается его прочность.

Процесс коррозии первого вида ускоряется, если на цементный камень действует мягкая вода или вода под напором.

Для предупреждения коррозии I вида необходимо: 1.Создать бетоны повышенной плотности за счет интенсивного уплотнения цементного камня;

2.Использовать цементы с ограниченным содержанием C3S;

3.Вводить в цемент тонкомолотые минеральные добавки которые связывает гидроксид кальция в нерастворимые соединения

Са(ОН)2 + SiO2(аморф.) + mH2O = CaO·SiO2nН2О. 4.Использовать пуццолановый цемент;


5.Карбонизация поверстного слоя бетона, путем выдерживания его на воздухе;
6Гидроизоляция поверхности цементного камня в виде оклейки, облицовки или пропитки поверхностного слоя гидроизоляционными материалами.

II вид: К разновидностям коррозии второго относятся

кислотная, магнезиальная коррозия, коррозия под влиянием некоторых органических веществ и т. п.

Кислотная коррозия возникает при действии растворов любых кислот, за исключением поликремниевой и кремнефтористоводородной.

Кислота вступает в химическое взаимодействие с Ca(OH)2, образуя растворимые соли (например, СаСl2) и соли, увеличивающиеся в объеме (CaSO42H2O)

Меры защиты от кислотной коррозии: При слабой кислотной коррозии (рН=4-6) цементный камень защищают кислотостойкими материалами (окраской, пленочной изоляцией и т. п.).
По стойкости к действию кислот слабой концентрации цементы можно расположить в таком порядке: глиноземистый цемент, пуццолановый ПЦ и обычный ПЦ.

При сильной кислотной коррозии (рН<4) вместо обычного портландцемента используют кислотоупорный цемент и кислотостойкие заполнители или полимерные связующие. Разница в стойкости цементов к действию сильно концентрированных кислот почти не ощутима поскольку разрешение происходит очень быстро.

Вредное влияние оказывают и масла, содержащие кислоты жирного ряда (льняное, хлопковое, рыбий жир и т. п.). Нефть и нефтяные продукты не опасны для цементного бетона, если в них нет остатков кислот, но они легко проникают через бетон.

Характерной коррозией III вида является сульфатная коррозия. Сульфаты, часто содержащиеся в природной и промышленных водах, вступают в обменную реакцию с гидроксидом кальция, образуя гипс CaSO42H2O.

При действии на бетон сернокислового натрия сульфат натрия вступает в реакцию с гидроксидом кальция цементного камня:

Разрушение цементного камня в этом случае вызывается кристаллизационным давлением кристаллов двуводного гипса.

Для защиты бетона от солевой коррозии необходимо:

-применять бетоны с низким В/Ц;

-тщательно уплотнять бетонную смесь;

-использовать воздухововлекающие и уплотняющие добавки;

-применять пористые заполнители, а также цементы, обеспечивающие высокую плотность цементного камня (портландцемент без минеральных добавок);

-отводить агрессивные солевые растворы от поверхности конструкции, либо изолировать их путем устройства защитных покрытий.

Борьбу с коррозией̆ III вида следует вести, принимая во внимании следующее:

— в бетонах на глиноземистом цементе или цементах с малым содержанием Cа(OH)2 невозможно образование многоосновных гидроаллюминатов кальция, чем ограничивается или исключается возможность образования гидросульфоаллюмината кальция.

— введение в бетонную смесь воздухововлекающих, пластифицирующих добавок, химических добавок (CaCl2), повышающих растворимость гидрата окиси кальция и гипса, кремнеорганических веществ, способствует повышению стойкости цементного камня и бетона к коррозии.

— эффективно создание защитных слоев на поверхности бетонной конструкции виде оклеечной, облицовочной или лакокрасочной изоляции

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Коррозия цементного камня

Цементный камень состоит из гелиевых и кристаллических продуктов гидратации цемента и многочисленных включений в виде негидратированных зерен клинкера. Основная масса новообразований при взаимодействии цемента с водой получается в виде гелевидной массы, состоящей в приемущественно из субмикрокристаллических частичек гидросиликата кальция. Гелеподобная масса пронизана относительно крупными кристаллами гидроксида кальция. Такое своеобразное «комбинированное» строение предопределяет специфические свойства цементного камня, резко отличающиеся от свойств других материалов – металлов, стекла, гранита и т.п. Например, с наличием гелиевой составляющей связана усадка при твердении на воздухе и набухание в воде, особенности работы под нагрузкой и другие свойства.

Читайте так же:
Конференция цемент бетон сухие смеси

Коррозия цементного камня вызывается воздействием агрессивных газов и жидкостей на составные части затвердевшего портландцемента. Встречаются десятки веществ, могущих воздействовать на цементный камень и оказаться для него вредным. Несмотря на разнообразие агрессивных веществ, основные причины коррозии можно разделить на три вида: разложение составляющих цементного камня, растворение и вымывание гидроксида кальция; образование легкорастворимых солей в следствии взаимодействия гидроксида кальция и других составных частей цементного камня с агрессивными веществами и вымывание этих солей (кислотная, магнезиальная коррозия); образование в порах новых соединений, занимающих большой объем, чем исходные продукты реакции; это вызывает появление внутренних напряжений в бетоне и его растрескивание (сульфоалюминатная коррозия).

Коррозия первого вида

Коррозия первого вида. Выщелачивание гидроксида кальция происходит интенсивно при действии мягких вод. Содержащих мало растворенных веществ. К ним относятся воды оборотного водоснабжения, конденсат, дождевые воды, воды горных рек и равнинных рек в половодье, болотная вода. Содержание гидроксида кальция в цементном камне через 3 мес твердения составляет 10-15% (считая на СаО). После его вымывания и в результате уменьшения концентрации СаО (менее 1,1 г/л) начинается разложение гидросиликатов и гидроалюминатов кальция. Выщелачивание в количестве 15-30% от общего содержания в цементном камне вызывает понижение его прочности на 40-50% и более. Выщелачивание можно заменить по появлению белых подтеков на поверхности бетона.

Для ослабления коррозии выщелачивания ограничивают содержание трехкальциевого силиката в клинкера до 50%. Главным средством борьбы с выщелачиванием гидроксида кальция является введение активных минеральных добавок и применение плотного бетона. Выдерживание на воздухе бетонных блоков и свай применяемых для сооружения оснований, а также портовых и других гидротехнических сооружений повышает их стойкость.

Коррозия второго вида

Коррозия второго вида. Углекислотная коррозия развивается при действии на цементный камень воды, содержащей свободный двуоксид углерода в виде слабой угольной кислоты. Избыточный (сверх равновесного количества) двуоксида углерода разрушает карбонатную пленку бетона вследствие образования хорошо растворимого бикарбоната кальция.

Общекислотная коррозия происходит при действии растворов любых кислот, имеющих значения водородного показателя рН<7; исключение составляют поликремневая и кремнефтористоводородная кислоты. Свободные кислоты встречаются в сточных водах промышленных производственных предприятий, они могут проникать в почву и разрушать бетонные фундаменты, коллекторы и другие подземные сооружения. Кислота образуется также из сернистого газа, выходящего из топок. В атмосфере промышленных предприятий, кроме SO2 могут содержаться ангидриты других кисло, а также хлор и хлористый водород. При растворении его во влаге, адсорбированной на поверхности железобетонных конструкций, образуется соляная кислота.

Кислота вступает в химическое взаимодействие с гидроксидом кальция, при этом образуются растворимые соли, а также соли увеличивающиеся в объеме.

Кроме того, кислоты могут разрушать и силикаты кальция. Бетон на портландцементе защищают от непосредственного действия кислот с помощью защитных слоев из кислотостойких материалов.

Магнезиальная коррозия

Магнезиальная коррозия наступает при взаимодействии на гидроксид кальция магнезиальных солей, которые встречаются в растворенном виде в грунтовых водах и всегда содержатся в большом количестве в морской воде.

В процессе магнезиальной коррозии образуется растворимая соль (хлористый кальций или двуводный сульфат кальция), вымываемая из бетона. Гидроксид магния представляет бессвязную массу, не растворимую в воде, в следствии чего реакция происходит до полного израсходования гидроксид кальция.

Коррозия под действием минеральных удобрений

Коррозия под действием минеральных удобрений. Особенно вредны для бетона аммиачные удобрения – аммиачная селитра и сульфат аммония. Аммиачная селитра, состоящая в основном из нитрата аммония, подвергается гидролизу и поэтому дает в воде кислую реакцию. Нитрат аммония действует на гидроксид кальция.

Образующийся нитрат кальция хорошо растворяется в воде и вымывается из бетона. Хлористый калий КСI повышает растворимость Са(ОН)2 и ускоряет коррозию. Из числа фосфорных удобрений агрессивен суперфосфат, состоящий в основном из монокальциевого фосфата и гипса, но содержащий еще и некоторое количество свободной фосфорной кислоты.

Коррозия под влияние органических веществ

Коррозия под влияние органических веществ. Органические кислоты, как и неорганические, быстро разрушают цементный камень. Большой агрессивностью отличаются уксусная, молочная и винная кислоты. Жирные насыщенные и ненасыщенные кислоты (олеиновая, стеариновая, пальмитиновая и др.) разрушают цементный камень, так как при воздействии гидроксида кальция они омыляются. Поэтому вредны и масла, содержащие кислоты жирного ряда: льняное, хлопковое, а также рыбий жир. Нефть, нефтяные продукты (керосин, бензин, мазут, нефтяные масла) не представляют опасности для бетона, если они не содержат нефтяных кислот или соединений серы. Однако надо учитывать, что нефтепродукты легко проникают через бетон. Продукты разгонки каменноугольного дегтя, содержащие фенол, могут агрессивно влиять на бетон.

Коррозия третьего вида

Коррозия третьего вида. Сульфоалюминатная коррозия возникает при действии на гидроалюминат цементного камня воды, содержащей сульфатные ионы. Образование в порах цементного камня малорастворимого трехсульфатного гидросульфоалюмината кальция (эттрингита) сопровождается увеличением объема примерно в 2 раза. Развивающееся в порах кристаллизационное давление приводит к растрескиванию защитного слоя бетона. Вслед за этим происходит коррозия стальной арматуры, увеличение растрескивания бетона и разрушение конструкции. С сульфоалюминатной коррозией необъходимо считаться при строительстве морских сооружений. Вместе с тем могут оказаться агрессивными сточные воды промышленных предприятий, а также грунтовые воды. Если в воде содержится сульфат натрия, то вначале с ним реагирует гидроксид кальция.

Читайте так же:
Мобильные установки по выгрузке вагонов с цементом

В последующем идет образование гидросульфоалюмината кальция вследствие взаимодействия получающегося сульфата кальция и гидроалюмината. Для борьбы с сульфоалюминатной коррозией применяется специальный сульфатостойкий портландцемент.

Щелочная коррозия

Щелочная коррозия может происходить в двух формах: под действием концентрированных растворов щелочей на затвердевший цементный камень и под влиянием щелочей, имеющихся в самом цементе. Если бетон насыщается раствором щелочи (едкого натрия или калия), а затем высыхает, то под влиянием углекислого газа в порах бетона образуется сода и поташ, которые, кристаллизуясь, расширяются в объеме, повреждают и разрушают цементный камень. Сильнее разрушается от действия сильных щелочей цемент с высоким содержанием алюминатов кальция.

Коррозия, вызываемая щелочами цемента, происходит вследствие процессов, протекающих внутри бетона между его компонентами. В составе цементного клинкера всегда содержится разное количество щелочных соединений. В составе заполнителей бетона, в особенности в песке, встречаются реакционно способные модификации кремнезема: опал, халцедон, вулканическое стекло. Они вступают при обычной температуре в разрушительное для бетона реакции со щелочами цемента. В результате образуются набухающие студенистые отложения белого цвета на поверхности зерен реакционно-способного заполнителя, появляется сеть трещин, поверхность бетона местами вспучивается и шелушится. Разрушение бетона может происходить через 10-15 лет после окончания строительства.

Коррозия цементного камня

Коррозия вызывается воздействием агрессивных газов и жидкостей на составные части цементного камня, в основном Са(ОН)2и 3СаО·Al2O3·6Н2О. Основные причины коррозии можно разделить на 3 группы (по классификации В.М. Москвина).

1. Разложение составляющих цементного камня, растворение и вымывание гидроксида кальция (коррозия Iвида);

2. Образование легкорастворимых солей в результате взаимодействия гидроксида кальция с агрессивными веществами среды и вымывание этих солей (коррозия IIвида);

3. Образование в порах цементного камня новых соединений, занимающих больший объем, чем исходные вещества, что вызывает возникновение внутренних напряжений в цементном камне и его растрескивание (коррозия IIIвида).

Коррозия I вида

Она происходит при действии на цементный камень мягких вод, содержащих мало растворенных веществ. К ним относятся воды оборотного водоснабжения, конденсат, дождевые и болотные воды и др. Под действием воды происходит вымывание гидроксида кальция, и при снижении его содержания в поровой жидкости цементного камня менее 1,1 г/л начинают разлагаться гидросиликаты кальция. Выщелачивание Са(ОН)2в количестве 15-30% вызывает снижение прочности на 40-50%. Выщелачивание можно заметить по появлению белых потеков на поверхности конструкций.

Меры борьбы с коррозией I видавключают следующие мероприятия:

1. Ограничение содержания в цементе трехкальциевого силиката C3Sдо 50%.

2. Введение в состав цемента активных минеральных добавок, связывающих гидроксид кальция в нерастворимые соединения.

3. Обработка поверхностного слоя цементного камня веществами, образующими на поверхности пленку из нерастворимых продуктов, например, углекислым газом. Этот процесс протекает на воздухе, и сопровождается образованием на поверхности карбоната кальция

Са(ОН)2 + СО2 = СаСО3 ↓ + 2Н2О

Коррозия II вида

Она подразделяется на кислотную и магнезиальную коррозию.

Кислотная коррозия.Она имеет место при действии растворов любой кислоты с рН < 7; исключение составляют поликремневая и кремнефтористоводородная кислота. Свободные кислоты встречаются в сточных водах промышленных предприятий, они могут проникать в почву и в грунтовые воды. Кислота образуется также из кислых газов, содержащихся в атмосфере промышленных предприятий, таких как сернистый газ (образует сернистую и серную кислоты), хлор и хлористый водород (образуют соляную кислоту). Кроме того, на предприятиях химии и нефтехимии возможны технологические розливы кислот, разрушающие конструкции зданий.

Кислота вступает в химическое взаимодействие с гидроксидом кальция цементного камня, при этом образуются растворимые соли, или соли, обладающие невысокой растворимостью, но легко удаляемые с поверхности конструкций.

Са(ОН)2 + 2НСl = CаСl2 + 2Н2О

Са(ОН)2 + Н2SO4= Cа SO4 + 2Н2О

Углекислотная коррозия развивается при действии на цементный камень воды, содержащей свободную СО2в виде слабой угольной кислоты. Реакция протекает в две стадии. На первой цементный камень не разрушается, а даже дополнительно упрочняется создаваемой карбонатной пленкой.

Са(ОН)2 + СО2 = СаСО3 ↓ + 2Н2О

На второй стадии избыточная двуокись водорода разрушает карбонатную пленку вследствие образования хорошорастворимого бикарбоната кальция

СаСО3 + СО2+ Н2О = Са(НСО3)2

Магнезиальная коррозия.Она имеет место при воздействии на гидроксид кальция магнезиальных солей, которые встречаются в растворенном виде в грунтовых водах и всегда содержатся в большом количестве в морской воде. Разрушение цементного камня вследствие протекания обменных реакций происходит следующим образом

Са(ОН)2 + MgСl2 = CаСl2 + Mg(ОН)2

Са(ОН)2 + MgSO4= Cа SO4 + Mg(ОН)2

В результате этих реакций образуется или легкорастворимая соль CаСl2, или труднорастворимая, но не связанная с цементным камнем и легко механическим путем удаляемая с его поверхности -CаSO4.

Меры борьбы с коррозией II видавключают в себя следующие мероприятия:

1. Ограничение содержания в цементе трехкальциевого силиката до 50%.

2. Введение в состав цемента активных минеральных добавок, связывающих гидроксид кальция в нерастворимые соединения.

3. В случае кислотной коррозии устройство на поверхности конструкций защитных слоев из кислотостойких материалов ( кислотостойкого кирпича или плитки, материалов на основе жидкого стекла и др.).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector