Srub-stroi58.ru

Сруб Строй
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплотехнический расчет с примером

Теплотехнический расчет с примером

Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.

В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.

Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.

Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.

Необходимые нормативные документы

Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:

  • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Актуализированная редакция от 2012 года [1].
  • СНиП 23-01-99* (СП 131.13330.2012). «Строительная климатология». Актуализированная редакция от 2012 года [2].
  • СП 23-101-2004. «Проектирование тепловой защиты зданий» [3].
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях» [4].
  • Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие» [5].

Скачать СНиПы и СП вы можете здесь, ГОСТ — здесь, а Пособие — здесь.

Рассчитываемые параметры

В процессе выполнения теплотехнического расчета определяют:

  • теплотехнические характеристики строительных материалов ограждающих конструкций;
  • приведённое сопротивление теплопередачи;
  • соответствие этого приведённого сопротивления нормативному значению.

Дальше будут приведен пример теплотехнического расчета без воздушной прослойки.

Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки

Исходные данные

1. Климат местности и микроклимат помещения

Район строительства: г. Нижний Новгород.

Назначение здания: жилое .

Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна — 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).

Оптимальная температура воздуха в жилой комнате в холодный период года tint= 20°С (ГОСТ 30494-96 табл.1).

Расчетная температура наружного воздуха text, определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);

Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна zht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);

Средняя температура наружного воздуха за отопительный период tht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).

2. Конструкция стены

Расчет толщины утеплителя

Стена состоит из следующих слоев:

  • Кирпич декоративный (бессер) толщиной 90 мм;
  • утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком «Х», так как она будет найдена в процессе расчета;
  • силикатный кирпич толщиной 250 мм;
  • штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.

3. Теплофизические характеристики материалов

Значения характеристик материалов сведены в таблицу.

теплопроводности слоев стены

Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.

Расчет

4. Определение толщины утеплителя

Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.

4.1. Определение нормы тепловой защиты по условию энергосбережения

Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:

Примечание: также градусо-сутки имеют обозначение — ГСОП.

Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:

Rreq= a×Dd + b = 0,00035 × 5182 + 1,4 = 3,214м 2 × °С/Вт ,

где: Dd — градусо-сутки отопительного периода в Нижнем Новгороде,

a и b — коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).

4.1. Определение нормы тепловой защиты по условию санитарии

В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).

Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):

расчет нормативного сопротивления теплопередачи по условию санитарии

где: n = 1 — коэффициент, принятый по таблице 6 [1] для наружной стены;

Читайте так же:
Кладите по одному кирпичу за раз

tint = 20°С — значение из исходных данных;

text = -31°С — значение из исходных данных;

Δtn = 4°С — нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 [1] в данном случае для наружных стен жилых зданий;

αint = 8,7 Вт/(м 2 ×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 [1] для наружных стен.

4.3. Норма тепловой защиты

Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем Rreq из условия энергосбережения и обозначаем его теперь Rтр0= 3,214м 2 × °С/Вт .

5. Определение толщины утеплителя

Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:

где: δi- толщина слоя, мм;

λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

1 слой (декоративный кирпич): R1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .

3 слой (силикатный кирпич): R3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .

4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина «Теплопотери здания. Справочное пособие»):

где: Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности, αext принимается по таблице 14 [5] для наружных стен;

ΣRi = 0,094 + 0,287 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт

Толщина утеплителя равна (формула 5,7 [5]):

где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 [5]):

где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.

Из полученного результата можно сделать вывод, что

R = 3,503м 2 × °С/Вт > Rтр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно.

Влияние воздушной прослойки

В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.

Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:

а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае — это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;

б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).

Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.

Расчет теплового сопротивления наружной стены

2. Климатические параметры
Значение расчетной температуры внутреннего воздуха tint для жилых помещений определено в соответствии с ГОСТ 30494–2011:

tint=21 0 С

Значение расчетной температуры наружного воздуха text принято по СП 131-13330-2012 (Таблица 3.1), равной значению средней температуры наиболее холодной пятидневки обеспеченностью 0,92:

text= -37 0 С

Продолжительность отопительного периода Zht определена по СП 131-13330-2012 (Таблица 2):

Zht=221 0 сут

Средняя температура наружного воздуха за отопительный период text av принята по СП 131-13330-2012 (Таблица 3.1):

text av = -8,1 0 С

Градусо–сутки отопительного периода Dd определены по СНиП 23-02-2003 (Формула 2):

Dd = (tint— text av ) х Zht = (21+8,1) х 221= 6431 0 С сут

3. Нормируемые теплоэнергетические параметры
Согласно п.5.3 СНиП 23-02-2003 нормируемое сопротивление теплопередаче определяется по формуле R=a•Dd+b (Таблица 4. (1)) и равно при расчетных условиях:

Rw reg = 0,00035 х 6431 + 1,4 = 3,65 м 2 0 С/Вт

где коэффициенты a и b для наружных стен жилых зданий принимаются из Таблицы 4 СНиП 23-02-2003

4. Приведенное сопротивление теплопередаче ограждающей конструкции
Приведенное сопротивление теплопередачи ограждающих конструкций рассчитывается по формуле:

где
δ1… — толщина ограждающего слоя №1… в метрах;
λa1 – расчетный коэффициент теплопроводности материала №1… в условиях эксплуатации А;
r – коэффициент теплотехнической однородности в растворных швах. Определяется по таблице… или рассчитывается на основе данных толщины растворного шва, применяемого раствора, используемой арматуры;

Для сравнения свойств теплопроводности самого материала условимся, что растворного шва не существует и поэтому коэффициент теплотехнической однородности будет равен:

r = 1

Важно! В расчетах необходимо использовать расчетный коэф. теплопроводности в условиях «А». Эти условия учитывают тепло-влажностные процессы во время проживания. Некоторые производители лукавят, когда производят подобные расчеты с применением λ сух . Для высушенного материала λ сух меньше чем λ a , следовательно, толщина стены будет подсчитана неверно, так как в естественных условиях стена ни когда не будет сухой и будет обладать своей естественной влажностью.

Пример расчета приведенного сопротивления теплопередачи для наружной стены, выполненной из автоклавного газобетона:

Читайте так же:
Марка керамического кирпича определяется по его

Автоклавный газобетон (p=600кг/м 3 ) ГОСТ 31359-2007 приложение А, коэффициент теплопроводности λа=0,160Вт/(м°С), толщина δ=560мм

Rw r = (1/8,7 + 0,560/0,160 + 1/23) x 1= 3,66 м 2 0 С/Вт

Сравниваем с нормируемым значением:

Rw r = 3,66 м 2 0 С/Вт > Rw reg =3,65 м 2 0 С/Вт

Таким образом, минимальная толщина стены для автоклавного газобетона марки по плотности D600 должна быть не меньше 581мм. При этом мы помним, что блоки укладываются на клей с использованием армирующей сетки и следовательно толщина стены будет немного больше, так как в этом случае коэф. теплотехнической однородности r будет меньше 1.

На данном примере определены толщины наружных стен для поризованного блока, неавтоклавного газобетона, пенобетона, арболита и полистиролбетона.

Таблица №1. Толщина наружной стены, рассчитанной по нормам СНиП применительно к Новосибирской области.

Наименование

Газобетон
автоклав.

Поризованный блок

Газобетон
неавтоклав.

Пенобетон

Арболит

Полистирол
бетон

Марка по плотности

Марка по прочности

B2,5

Плотность, кг/м 3

Нормируемое сопротивление теплопередаче для Новосибирской обл., м 2 0 С/Вт

3,65

Толщина стены, удовлетворяющий требованиям СНиП, мм

Среди представленных образцов, самым теплым материалом для наружной стены оказался полистиролбетон. Если вы решили строить здание 2 — 3 этажа, то блоки из полистиролбетона — разумный выбор с точки зрения сохранения тепла, прочности, водопоглощения, и других характеристик.

630017, г.Новосибирск,
ул. Михаила Кулагина, д.35 .
Рабочие дни: пн — пт
Время работы: с 9-00 до 18-00

Расходы на доставку блоков длинномерами в пересчете на 1м 2 стены рекомендованной производителями толщины

Объем и вес являются определяющими характеристиками для общего количества, перевозимого за один рейс. Оптимальными расходами на доставку будут для полистиролбетонных блоков, они займут максимальное место в кузове и не допустят «перегруза», чего ни как не скажешь про газобетон или пенобетон. Самым дорогим в перевозке, оказался поризованный блок. Причина — 20 поддонов занимают практически весь кузов длинномера не смотря на то, что по тоннажу есть 25% запас.

Способность проводить тепловую энергию от более горячего тела к менее горячему.

Коэффициент теплопроводности λ – величина, показывающая способность материала передавать единицу тепловой энергии за 1 час через 1м 2 поверхности при разнице температур в 1 градус С — Вт/м 2 0 С.

Чем ниже значение коэф. теплопроводности λ, тем выше способность материала сохранять тепло. Для каждого строительного материала эта величина нормируется ГОСТ. В строительстве используется несколько значений коэф. теплопроводности характеризующихся физическим состоянием материала.

Различают:
λсух – в сухом состоянии.
λа,б – коэффициенты принимаемые при расчетах теплового сопротивления ограждающих конструкций в условиях эксплуатации «А» и «Б».

Некоторые материалы имеют очень низкий коэффициент теплопроводности в сухом состоянии. Однако, в расчетах теплового сопротивления стен этот коэффициент применять нельзя. Необходимо помнить, что при эксплуатации здания, стены всегда будут обладать естественной влажностью. Поэтому, для расчета тепловой защиты жилых зданий должен применять коэффициент теплопроводности в условиях эксплуатации «А» — λа. При сравнивании различных материалов следует обращать внимание именно на это значения.

Способность материала впитывать и удерживать в порах и капиллярах воду. Указывается в процентах от массы изделия в сухом виде. Чем ниже этот показатель, тем материал считается лучше.

Показатель содержания влаги в % от массы изделия в сухом состоянии. Для большинства стеновых материалов, естественной влажностью считается величина 4-5%. В виду особенностей производства некоторых материалов, например газобетона, процесс высыхание очень сильно растянут во времени. ГОСТ-ом определены максимальные значения влажности, при которых разрешено использование материала. При этом, мы должны понимать, что тепло-физические качества материалов будут хуже по сравнению с расчетными. Кроме того, повышенная отпускная влажность увеличивает массу изделия и, следовательно, снижает перевозимый объем за один рейс по сравнению с материалом выдержанным до естественной влажности. Например: для автоклавного газобетона, естественной влажностью считается 4%. Следовательно, объем 0,75м 3 блоков марки по плотности D600 на одном поддоне должен весить 468кг. Самогруз грузоподъемностью 5т смог бы перевезти 10 поддонов блоков (7,5м 3 , 4680кг). Однако, отпускная влажность газобетона 25 – 28% и, следовательно, самогруз за один рейс сможет доставить на строительную площадку только 6м 3 блоков, масса которых составит 4536кг.

Изменение линейных размеров при высыхании.

— это способность материала пропускать или задерживать пар в результате разности парциального давления при одинаковом атмосферном давлении по обеим сторонам стены.

Читайте так же:
Оборудования при изготовлении керамического кирпича

Многие производители любят хвалиться тем, что их материал обладает «большой» паропроницаемостью, и тем самым вводять в заблуждение клиента. Большая – не значит хорошая или плохая.

Например: в SIP-панелях папроницаемость близка к нулю. Это означает, что, то количество влаги, которое оказалось в панели на момент ее производства, остается практически неизменным. Т.е. из помещения в панель ни чего не проникает и через панель ни чего не выходит в атмосферу. Подобная теплоизоляция используется в термосах. Они очень хорошо сохраняют тепло, но для комфортного проживания, вам придется серьезно задуматься над вентиляцией дома.

Высокая паропроницаемость газобетона (0,16мг/м*ч*Па), тоже влечет за собой дополнительные задачи и расходы. Например, если вы решили облицовывать стены дома кирпичом, то вам придется устраивать вентиляционный зазор (обычно 2 – 5см) между газобетоном и кирпичом. Паропроницаемость кирпича ниже, чем у газобетона. Если не предусмотреть вентиляционный зазор, то на внешней стороне газобетона будет образовываться конденсат и если его не отводить, то он приведет к преждевременному разрушению стены. В такой многослойной стене, при расчете тепловой защиты здания, теплопроводность кирпича в расчет не берется. Другими словами, вы должны понимать, что кирпич будет носить сугубо декоративный характер, блоки из газобетона будут толще, чем могли бы быть, фундамент придется делать шире, привязка кирпича к газобетону усложнится. Как вариант, стены газобетона пропитывают пароНЕпроницаемой грунтовкой. Т.е., вы «закупориваете» стены и они перестают дышать. «Закупоривание» стен желательно делать только с просушенным газобетоном. Производители утверждают, что газобетон высушивается до своей естественной влажности за 2 – 3 отопительных сезона. Это значит, что 2-3 года вашей жизни в недостроенном доме будут с повышенным расходом на отопление и без чистовой отделки.

Человеческий организм веками привык жить в деревянных домах, и мы привыкли сравнивать микроклимат «каменных джунглей» с микроклиматом деревянного дома. Паропроницаемость сосны поперек волокна — 0,06мг/м*ч*Па, у полистиролбетона — 0.08мг/м*ч*Па. При данном сравнении можно говорить, что скорей всего микроклимат дома из полистиролбетона тоже будет приближен к уровню деревянного дома. Кроме того, если вы решите заштукатурить стены или закрыть облицовочным кирпичом, то устройство стены значительно упроститься. Так как паропроницаемость кирпича выше, чем у полистиролбетона, то устройство вентилируемого зазора не понадобиться, и привязка кирпича к блокам с помощью базальтовой сетки упрощает армирование. Кроме того, в этом случае кирпичная кладка будет участвовать в тепловой защите здания.

Свойство материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без видимых признаков разрушения и без значительного понижения прочности. Основная причина разрушения материала под действием низких температур — расширение воды, заполняющей поры материала, при замерзании. Чем выше относительный объём пор, доступных для проникновения воды, тем ниже морозостойкость. Безусловно, чем выше значение, тем более долговечней материал. Обозначается буквой «F» и цифровым значение, равным количеству циклов замораживания/оттаивания. Например: полистиролбетон марки по плотности D450 имеет морозостойкость F200.

ГОСТ обязывает производителей указывать марку по прочности ячеистых бетонов, обозначая их буквой «В» и цифровым значением. Например: марка по прочности В2,5 позволяет строить здания высотой до 5 этажей. Если вы строите 4 – 5 этажей, то следует подбирать материал именно с таким значением. Для строительства дома высотой до 3 этажей с жлезобетонными плитами перекрытия и несущими стенами толщиной 300мм достаточна прочность материала В1,5. Остановив свой выбор на материале с такой прочностью, вам не придется переплачивать за избыточную прочность. К тому же, ячеистый бетон, обладающий повышенной прочностью, будет обладать и большей плотностью, большими тепловыми потерями и увеличенной нагрузкой на фундамент. Поэтому, прежде чем останавливать свой выбор на материале с невостребованной прочностью подсчитайте, во сколько вам это обойдется на этапе строительства и в процессе эксплуатации.

Плотность и марка по плотности

Плотность – физическая величина, определяемая как отношение массы тела к занимаемому этим телом объему. Например: строительные блоки из полистиролбетона имеют плотность 450кг/м3, это означает, что 1м3 таких блоков будет весить всего 450кг.

Марка по плотности – ГОСТ обязывает производителей указывать плотность ячеистых бетонов. Марка по плотности обозначается буквой «D», после которой стоят цифры, значение которых указывает на плотность материала. Например: марка по плотности D600 автоклавного газобетона – означает, что 1м3 таких блоков имеет массу 600кг.

Зная плотность строительных блоков можно подсчитать массу стен всего здания. Однако, плотность материала становится важной уже при доставке на строительную площадку. Например: сомагруз, грузоподъемностью 5т, способен разместить в своем кузове 8 поддонов блоков из полистиролбетона марки по плотности D450 общим объемом 10,16м3. Т.е. общий вес блоков с учетом отпускной влажности 4% составит 4755кг. В тоже время, этот же самогруз сможет перевести только 8 поддонов блоков из автоклавного газобетона марки по плотности D600 общим объемом 6м3, так как масса блоков с учетом отпускной влажности 25 – 28% будет уже 4536кг. Другими словами, за один рейс на строительную площадку будет привезено автоклавного газобетона меньше, чем полистиролбетона на 4,16м3. При одинаковой стоимости рейса, доставка газобетона дороже на 40% .

Тестовое модальное окно.

Читайте так же:
Кирпич строит пуст м150 1nf лср

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Что такое теплопроводность и термическое сопротивление

Что такое теплопроводность и термическое сопротивление

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Читайте так же:
Как отмыть затирку с кирпича

Значения требуемого термического сопротивления внешней стены жилых зданий для ряда городов России.

Требуемое термическое сопротивление определяет каким должно быть термическое сопротивление конструкции внешней стены (Rквс), при строительстве в определённом регионе. Рассчитывается Rквс по формуле:

Rквс = Σ δn / λn + 0,158 (это упрощённое представление формулы, подробнее см. ниже в расчётах, где мы сравниваем материалы для возведения внешних стен)

где,
Σ — знак суммы слоёв (внешняя стена дома будет состоять из нескольких слоёв: штукатурный слой, слой керамического блока, слой лицевого кирпича, у каждого слоя своя толщина (δ) и свой коэффициент теплопроводности (λ));
δn — толщина слоя;
λn — коэффициент теплопроводности слоя;
0,158 — сведённый к одному значению коэффициент теплоотдачи внутренней и наружной поверхности.

Как уже было отмечено выше, для обеспечения СНиП «Тепловая защита зданий» Rквс должно быть больше или равно Rтр.

Может показаться удивительным, но важнейшей характеристикой, с изучения которой стоит начать сравнивать материалы для возведения внешних стен, во многом определяющей итоговые затраты на строительство, является коэффициент теплопроводности (λ).

Согласитесь, одним из важнейших условий выбора материала внешних стен будет ответ на вопрос — отвечает ли внешняя стена, возведённая из рассматриваемого материала, СНиП «Тепловая защита зданий» для региона строительства.

  • фундамент, т.к. меньшей окажется толщина стены ленточного фундамента, или ростверка свайно-ростверкового фундамента, и даже при фундаменте в виде плиты уменьшится габариты плиты и толщина бетонного основания, заливаемого под несущие стены;
  • на кладочные работы, т.к. чаще всего каменщик исчисляет стоимость своих услуг исходя из кубатуры кладки, при меньшей толщине стены кубатура кладки также станет меньше;
  • на кладочный раствор;
  • на кровельные материалы и работы, т.к. внешние габариты дома уменьшаться, а значит уменьшится и площадь кровли.

Кайман30 — это самое последнее 4-е поколение крупноформатных керамических блоков.

      • Челябинск
      • Екатеринбург
      • Новосибирск
      • Красноярск.

      В чём отличие лучшего блока России Керакам Кайман30 от обычного керамического блока?

      4 признака настоящей тёплой керамики.

      обычный керамический блок Теплоэффективный керамический блок Керакам Kaiman 30.jpg 1. Когда мы выбираем из какого многопустотного щелевого керамического блока строить свой дом, важным параметром является не габаритный размер блока, а длина керамических дорожек. Именно по ним движется тепловой поток, т.к. воздух, находящийся в замкнутых камерах является отличным изолятором. В более современном керамическом блоке Кайман30 , путь, который должен будет преодолеть тепловой поток, длиннее;

      2. Обратите внимание на то, что керамическая дорожка у блока Кайман30 имеет меньшую толщину, чем у обычных керамических блоков, чем меньше толщина пути, тем меньший тепловой поток пройдёт по нему за единицу времени;

      3. Настоящая тёплая керамика не может иметь марку прочности М100 и более, т.к. увеличение марочной прочности достигается за счёт более высокой плотности глины, чем плотнее материал, тем лучше он пропускает тепло. У Кайман30 марка прочности на сжатие М75, это связано с тем, что у теплоэффективных керамических блоков Кайман30 высокая поризация самой глины. Воздушные микрокамеры также увеличивают длину пути для теплового потока. При этом марка прочности М75 позволяет использовать Кайман30 как самонесущий блок в зданиях до 5-ти этажей.;

      4. Ну и наконец, последнее, запатентованное ноу хау в конструкции блока Кайман30 , это теплоэффективный замок боковой стыковки блоков, у Кайман30 замок представляет собой длинный пиловидный путь для выхода тепла из дома, в устаревшей модели обычных керамических блоков, тепло в замке утекает по прямой и толстой дорожке.

      Здесь можно посмотреть Протокол испытаний на теплопроводность для керамических блоков Керакам Kaiman 30
      Значение коэффициента теплопроводности в эксплуатационном состояние Вы сможете найти в конце документа.

      Ниже в таблице мы сравниваем керамические блоки с другими материалами, применяемыми для возведения внешних стен.

      • Вы видите создаваемое, другими материалами, применяемыми для возведения внешних стен, значение термического сопротивления внешней стены.
        Термическое сопротивление внешней стены, возведённой из теплоэффективных керамических блоков Кайман30 и облицованной щелевым кирпичом составляет 3,7344 м2*С/Вт .
        Термическое сопротивление внешней стены, возведённой из теплоэффетивного керамического блока Кайман30 с облицовкой фасада штукатуркой — 3,5236 м2*С/Вт
      • Вы видите сумму на которую увеличатся затраты на строительство при замене керамоблоков Кайман30 на другие материалы.
      • Кликнув на ссылку расчёт представлен здесь, Вы увидите подробный расчёт в цифрах, на примере конкретного проекта дома нашего каталога, где мы сравниваем керамические блоки с другими материалами в разных конструкциях.

      Название конструкции

      Термическое
      сопротивление

      Увеличение затрат
      на строительство относительно
      керамических блоков Кайман30

      голоса
      Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector