Srub-stroi58.ru

Сруб Строй
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как определить оптимальную толщину стен из газобетона

Как определить оптимальную толщину стен из газобетона

Толщина стен из газоблока непосредственно влияет на тепло в доме. Чем толще газобетонные стены, тем комфортнее в помещении зимой. Казалось бы, что может быть проще: делай стену шире — и забудь про холода. Но есть и обратная сторона медали: большая ширина стены из газобетона означает и использование большого количества стройматериалов, а значит, рост расходов.

Газобетонный блок

Решать, какая должна быть толщина кладки из газоблока, необходимо еще на стадии проектирования жилища, когда закладываются его главные параметры. При этом важно ориентироваться на критерии, от которых зависит теплопроводность стен.

Теплоизоляционные характеристики газобетона

Газобетонные блоки входят в категорию ячеистых бетонов. Имеют низкие показатели теплопроводности по сравнению с большинством других стеновых материалов. Такой уровень — залог того что в помещении будет тепло зимой зимой и комфортно летом.

Низкой теплопроводностью блоки из газобетона обязаны пористой структуре. В процессе производства материала пузырьки газа равномерно распределяются внутри, тем самым снижая его способность отдавать тепло.

Размеры блока

Пористая структура, с одной стороны, наделяет газоблоки преимуществами, но с другой — ухудшает их прочность. Прочность газобетона на сжатие в зависимости от марки составляет 15–50 кг/см2. Блоки с низкой плотностью, например, D200, имеют минимальную теплопроводность. Однако использовать такой газоблок для несущих стен нельзя из-за ограниченной несущей нагрузки: как правило, он применяется в качестве утеплителя.

Выбирая размер подходящего блока газобетона для кладки стен дома, уделяют внимание и теплопроводности, и прочности на сжатие.

Рассчитывая оптимальное значение толщины стен объекта из газобетона, важно помнить о влиянии влаги на теплопроводность. Намокшие блоки хуже удерживают тепло, поэтому нужно защищать их от осадков фасадными материалами: кирпичом, сайдингом, штукатуркой.

Соотношение прочности газоблоков и этажности зданий

Нормативы по возведению стен здания из газобетонных блоков указаны в СТО 501-52-01-2007. В соответствии с этим документом при строительстве зданий нужно учитывать прочность газоблоков на сжатие.

Сертификат соответствия газоблоков ЭКО

Определить, какой должна быть прочность материала для постройки стены из газобетонных блоков, поможет таблица:

Этажность зданияОдноэтажноеДвухэтажноеТрехэтажное
Прочность газоблоковсо сборно- монолитными или плитами перекрытияс монолитными перекрытиямисо сборно- монолитными или плитами перекрытияс монолитными перекрытиями
В 2,0+– !– !– !
В 2,5+++
В 3,5++++++++
В 5,0+++++++++++

«+» — материал подходит для использования;

По плотности выделяют теплоизоляционные марки газобетона (до D350), конструкционные (от D700) и комбинированные — конструкционно-теплоизоляционные (D400, D500 и D600).

Газобетонные блоки

Оптимальную плотность газоблоков определяют с учетом назначения постройки. Например, при определении толщины стен возводимого гаража из газобетона или подсобного помещения, для которого качественная теплоизоляция не важна, уделяют внимание только прочности.

Для многих регионов России оптимальным стройматериалом считаются газоблоки марок D400 и D500. Они достаточно прочны при низкой теплопроводности. Например, теплопроводность блоков ЭКО D500 B3,5 составляет 0,12 Вт/м* °С.

Газобетонные блоки

Кроме того, выбирая газобетон для наружных стен, важно оценивать его морозостойкость. Качество изготовленный материал способен перенести до сотни циклов заморозки-разморозки без каких-либо отрицательных последствий для своих характеристик и эксплуатационных свойств.

Толщина газобетонной стены: стандарты и рекомендации

Показатели теплозащиты зданий, которые обеспечивают формирование благоприятной температуры в помещении и способствуют экономичному расходу энергии, можно найти в СНиП 23-02-2003. Документ содержит правила для объектов с постоянным проживанием и отоплением.

Рекомендуемая толщина возводимых стен из газобетона должна вычисляться при проектировании дома. Определиться с этим параметром помогает учет следующих критериев:

  • устойчивость стройматериала к морозу, влаге, коррозии, высокой температуре;
  • траты на отопление;
  • защита от излишнего увлажнения.

Если у вас нет желания обращаться за составлением теплотехнического расчета к специалистам, можно выполнить его самостоятельно, ориентируясь на средние показатели. Этого достаточно, чтобы в доме было уютно и тепло.

По рекомендациям производителей и на основе статистики установлены следующие стандарты подбора размеров (толщины) газоблока для строительства дома:

  • При постройке домов сезонного проживания толщина стены с кладкой из газобетонных блоков может начинаться от 200 мм. Но специалисты рекомендуют остановиться на 300 мм.
  • При устройстве цоколя и подвала следует выбирать газоблоки толщиной 400 мм, марки D500 или D600, класса В3,5-В5.
  • Для межквартирных перегородок рекомендована толщина газобетона 300 мм, для межкомнатных — 100-150 мм.
  • Минимальная толщина, которую может иметь несущая стена на основе прошедшего автоклавирование газобетона, — 375 мм, самонесущей — 300 мм. Для сравнения: наименьшая толщина стен из пеноблоков при равнозначной теплопроводности конструкций должна быть в 1,6 раза больше, т. е. для несущих — 600 мм, для самонесущих — 480 мм.

Расчет оптимальной толщины кладки из газобетонных блоков

конструкций должна быть в 1,6 раза больше, т. е. для несущих — 600 мм, для самонесущих — 480 мм.

В упрощенном виде толщина несущей стены, строящейся из газобетона, рассчитывается по следующей формуле:

Теплопроводность

λ — коэффициент теплопроводности. У каждой марки блоков этот коэффициент свой. Необходимый показатель в конкретном случае можно выбрать в таблице ниже: в ней приведены общие значения по ГОСТ 31359-2007. Также его можно найти в протоколах испытаний завода-изготовителя стройматериалов.

Марка по плотностиКоэф. теплопроводности в сухом состоянии, Вт/м*°С
D4000,096
D5000,12
D6000,14
D7000,17
Сопротивление передаче тепла

Rreg — сопротивление передаче тепла, которым обладают стены из газоблока. Данный параметр можно вычислить, умножив коэффициент a (0,00035) на Dd (градусо-сутки периода отопления, ГСОП) и прибавив к полученному числу коэффициент b (1,4).

Данные коэффициенты представлены в СНиП 23-02-2003. ГСОП представляют собой разницу между тем, какая температура за окном и в помещении наблюдается в течение отопительного периода, умноженную на длительность сезона отопления. Эти значения можно посмотреть в СНИП 23-01-99 и пособии «Строительная климатология».

Но проще найти нужное значение в таблице (не для всех городов):

Читайте так же:
Кирпич с фаской для чего
ГородНеобходимое сопротивление передаче тепла, м2*°С/Вт
Москва3,28
Пермь3,64
Омск3,82
Краснодар2,44
Санкт-Петербург3,23
Екатеринбург3,65
Казань3,45
Красноярск4,84
Челябинск3,64
Новосибирск3,93
Волгоград2,91
Якутск5,28
Сочи1,79
Магадан4,33
Тверь3,31
Уфа3,48

Блок белого цвета

Если использовать формулу, получится, что толщина блока для дома, расположенного в Москве, должна составлять минимум 44 см при применении газобетона D500. При использовании газоблоков D400 показатель составляет 37,5 см.

Для северных регионов расчетные значения толщины стен равны 74–77 см. При строительстве домов из газобетона в таких условиях рекомендуется сооружать многослойную конструкцию.

Толщина стены из газоблоков и звукоизоляция

За счет ячеистой структуры газоблоки прекрасно гасят звуковую энергию. Стены дома из этого материала хорошо ограждают от уличного шума. Разобраться, какой толщины должна быть стена из газобетона для комфортной тишины, помогут следующие нормы звукоизоляции:

                    • межквартирные стены и перегородки — от 52 дБ;
                    • стены между жилыми помещениями и магазинами — от 55 дБ;
                    • перегородки между комнатами — от 43 дБ;
                    • перегородки между комнатой и санузлом — от 47 дБ.

                    При возведении межкомнатных перегородок размером 100–150 мм рекомендуется использовать блоки D600. Покрытые гипсовой штукатуркой такие конструкции имеют индекс изоляции звука 43 дБ — в пределах нормы. Конструкции толщиной 300 мм обеспечивают изоляцию от шума в 52 дБ. Эффективно уменьшить уровень шума помогает внутренняя отделка гипсокартоном.

                    Факторы снижения энергоэффективности

                    Когда вычисляется толщина стены, строящейся из газобетонных блоков для дома или другого объекта, речь идет о цельном газоблоке. На практике при строительстве здания используют отдельные элементы, которые соединяют друг с другом бетонными или растворными швами. Получается большое количество стыков — возможных «мостиков холода». Кроме того, в стеновую конструкцию укладывают арматуру, формируют армирующий пояс — это приводит к повышению теплопроводности.

                    укладка блоков

                    Чтобы сохранить высокие изоляционные характеристики газобетонной кладки, необходимо придерживаться следующих правил:

                                      • Скрепляющие растворы нужно готовить из сухих клеевых составов, предназначенных специально для газобетона. Такие смеси состоят из цемента, минеральных компонентов и полимерных модифицирующих добавок. Если работы проводятся зимой, в составе смеси должны быть противоморозные добавки. Для минимизации потерь тепла рекомендуется делать слой клеящего шва толщиной 2–3 мм. Если в попытках сэкономить заменить специальный состав раствором цемента и песка, результаты будут не самыми приятными: увеличится размер шва, что приведет к проблемам с «мостиками холода».
                                      • Через стены уходит до 25% тепла. Основная масса теплопотерь связана с окнами, крышей и фундаментом. Поэтому этим проблемным зонам требуется уделять особое внимание и тщательно обустроить теплоизоляцию.
                                      • В населенных пунктах с холодным климатом желательно утеплять стены снаружи.

                                      Многослойные конструкции — альтернатива увеличению толщины стен

                                      Для комфортного проживания без больших затрат на отопление в доме из газобетонных блоков можно использовать не только метод увеличения толщины стен. Еще один эффективный способ — возводить конструкции из двух или трех слоев с применением утеплителя и отделочного материала.

                                      Популярные способы создания таких конструкций

                                      • Облицовка кирпичом без утепления. При этом между слоями оставляют вентиляционный зазор. Кирпичная кладка осуществляется по стандартной технологии с применением гибких связей.
                                        штукатурка

                                      укладка кирпича

                                      Наружное утепление дома со стенами из газобетона необходимо выполнять комплексно. При этом важно учитывать изоляцию цоколя и фундамента, создание отмостки. При монтаже нескольких слоев следует обращать внимание на то, что коэффициент их паропроницаемости должен идти по нарастающей изнутри наружу. В таком случае пар не будет накапливаться в ячеистых блоках и беспрепятственно выйдет на улицу.

                                      При строительстве дома из газобетона следует придерживаться такой толщины стен, чтобы обеспечивалась низкая теплопередача при высокой прочности конструкции. Принять во внимание оба эти фактора позволяет учет таких показателей при выборе газоблоков, как класс прочности, плотность и коэффициент теплопроводности. Большое значение для правильного расчета толщины стены из блоков газобетона имеют и климатические условия региона.

                                      Почему нужно утеплять дом из газо-, пеноблоков?

                                      В этой статье я приведу свои аргументы в пользу утепления стены из пеноблоков. Не то чтобы я сторонник именно этой технологии строительства, но именно по поводу утепления пеноблоков возникает множество споров из-за того, что они имеют достаточно низкий коэффициент теплопроводности.

                                      Многие считают, что толщины 375 мм пено- и газобетонных блоков вполне достаточно для строительства дома в западной части России. Сделав расчёты я могу сказать, что это не так, и утеплять дома из пено- и газобетонных блоков необходимо.

                                      Минимально-допустимая толщина стены из пеноблоков по несущей способности — 300 мм с классом прочности не ниже В2,0 для двухэтажных зданий, от неё и будем отталкиваться.

                                      Причина необходимости наружного утепления №1

                                      В статье Выбор материала для стен индивидуального дома по соотношению стоимость/эффективность мы рассчитывали какие будут теплопотери у разных стен и сколько денег мы примерно потратим на отопление.

                                      Термическое сопротивление стены из пенобетона D600 толщиной 300 мм при идеальных условиях (сухой пеноблок) 2,30 (м 2 ∙ °С)/Вт (таблицу для расчёта термического сопротивления см. статью Расчёт толщины теплоизоляции).

                                      Если отделывать поверхность штукатуркой, то всё равно влага частично будет проникать в пеноблок и тем самым ухудшать его теплотехнические свойства, поэтому для сравнения примем отделку кирпичом т.к. в дальней перспективе это всё равно выгоднее штукатурки.

                                      Рассчитаем стоимость 1 м² такой стены:

                                      • Пеноблок D600 — 300 мм х 2800 руб/м³=840 руб/м²;
                                      • Клей для кладки, расход 19,5 кг на 1 м³ кладки, цена 288 руб/25 кг=11,52 руб/кг, итого 19,5*0,3*11,52=67,4 руб/м²;
                                      • Стоимость работы по монтажу пеноблоков 2350 руб/м³, итого 705 руб/м².

                                      Итого без учета отделки и облицовки — 1612,4 руб/м².

                                      Отделка лицевым кирпичом:

                                      • Кирпич лицевой цена 10 руб/м², расход 51 шт./м²=510 руб/м²;
                                      • Кладочный раствор 2350 руб/м³, расход 0,0288 м³/м²=67,68 руб/м²;
                                      • Гибкие связи 22 руб/шт., расход 4 шт./м²=88 руб/м²;
                                      • Стоимость работы 1100 руб/м².

                                      Итого стоимость отделки лицевым кирпичом 1765,68 руб/м².

                                      Итоговая стоимость стены при отделке кирпичом 3378,08 руб/м².

                                      Теперь сравним со стеной 375 мм.

                                      Термическое сопротивление стены из пеноблока толщиной 375 мм — 2,83 (м 2 ∙ °С).

                                      Рассчитаем стоимость 1 м² такой стены:

                                      • Пеноблок D600 — 375 мм х 2800 руб/м³=1050 руб/м²;
                                      • Клей для кладки, расход 19,5 кг на 1 м³ кладки, цена 288 руб/25 кг=11,52 руб/кг, итого 19,5*0,375*11,52=84,24 руб/м²;
                                      • Стоимость работы по монтажу пеноблоков 2350 руб/м³, итого 881,25 руб/м².

                                      Итого без учета отделки и облицовки — 2015,49 руб/м².

                                      Стоимость отделки таже, получаем что стена толщиной 375 мм дороже стены 300 мм на 403,09 руб/м².

                                      Теперь рассчитаем количество тепла будет уходить через эти стены за отопительные период для Подмосковья. Теплопотери рассчитываем по формуле:

                                      uteplpanoblock010

                                      Внутренняя температура (tвнутр) равна +22 °С;

                                      средняя температура воздуха на улице во время отопительного периода (tнаруж) для Москвы -2,2 °С (см. таблицу 3.1 СП 131.13330.2012);

                                      F — площадь поверхности, считаем на 1 м²;

                                      τ — время отопительного периода 205 дней умножаем на 24 часа, итого 4920 часов;

                                      R — термическое сопротивление стены.

                                      Суммарные теплопотери для стены 300 мм Q=(22+2.2)*1*4920/2.3=51767 Вт*ч;

                                      для стены 375 мм Q=(22+2.2)*1*4920/2.83=42072 Вт*ч.

                                      Переводим кВт*ч в МДж (1 кВт*ч=3,6МДж):

                                      стена 300 мм — 186,36 МДж;

                                      стена 375 мм — 151,46 МДж.

                                      Экономия на отоплении получается 34,9 МДж.

                                      В статье Чем топить частный дом мы рассчитали стоимость отопления. При отоплении магистральным газом стоимость 1 МДж равна 0,164 рубля.

                                      Отсюда получаем, что применив стены 375 мм вместо 300 мм мы получим экономию в 5,72 рубля на 1 м² поверхности стены за 1 год. Делим переплату на экономию, получим что применение стены 375 мм вместо 300 мм окупиться через 403,09/5,72=70,5 лет при том, что срок службы такого дома 60 лет.

                                      А теперь добавим к стене из пеноблока толщиной 300 мм утеплитель из минеральной ваты.

                                      Рассчитаем стоимость 1 м² такой стены:

                                      • Пеноблок D600 — 300 мм х 2800 руб/м³=840 руб/м²;
                                      • Клей для кладки, расход 19,5 кг на 1 м³ кладки, цена 288 руб/25 кг=11,52 руб/кг, итого 19,5*0,3*11,52=67,4 руб/м²;
                                      • Стоимость работы по монтажу пеноблоков 2350 руб/м³, итого 705 руб/м²;
                                      • Минеральная вата 50 мм х 3600 руб/м³=180 руб/м²;
                                      • Стоимость работы по монтажу мин.ваты 50 руб/м²;

                                      Итого без учета отделки и облицовки — 1842,4 руб/м².

                                      Стоимость отделки не изменилась, поэтому стена подорожала на 230 руб/м².

                                      Термическое сопротивление стены из пеноблока 300 мм + утепление 50 мм = 3,49 (м 2 ∙ °С)/Вт, т.е. стена получается теплее чем стена 375 мм и при этом стоит дешевле.

                                      Рассчитываем теплопотери за отопительный период по формуле, приведенной выше:

                                      Переводим в МДж, Q=34.116*3.6=122.8 МДж.

                                      Экономия по сравнению со стеной 300 мм — 63,56 МДж/год или 10,42 руб/м² стены за 1 год. Утепление 50 мм мин.ваты окупится за 230/10,42=22 года, что достаточно выгодно т.к. срок службы дома составляет около 60 лет.

                                      Если мы увеличим утепление до 100 мм, то тогда удорожание стены по сравнению с 300 мм будет 410 рублей. Термическое сопротивление такой стены будет 4,68 (м 2 ∙ °С)/Вт.

                                      Теплопотери за 1 год составят Q=(22+2.2)*1*4920/4.68=25441 Вт*ч = 91.6 МДж.

                                      Экономия стены с утеплением 100 мм мин.ватой по сравнению со стеной без дополнительного утепления составит 64,77 МДж или 15,54 руб/год.

                                      Дополнительные затраты окупятся через 410/15,54=26,4 года.

                                      Т.о. получается, что утепление минеральной ватой гораздо более выгоднее чем увеличение толщины стены. Это первая причина использовать утеплитель. Какой толщины использовать минеральную вату зависит от климата, прогнозируемого срока службы здания, стоимости энергоресурсов. Оптимальную толщину вы можете подобрать по программе Excel, которая приведена в статье Выбор материала для стен индивидуального дома по соотношению стоимость/эффективность. Если мы говорим про строительство дома из пенобетонных блоков Подмосковье, то при сроке службы в 60 лет выгоднее всего утепление в 150 мм даже при отоплении магистральным газом при нынешних ценах.

                                      Причина необходимости наружного утепления №2

                                      Действие влаги очень плохо влияет на долговечность стены из пено- и газобетонных блоков. Вода имеет свойство расширяться при замерзании. Влага всегда присутствует в атмосфере и конструкциях, а при понижении температуры она выделяется из воздуха и конденсируется на поверхностях. При замерзании влага разрушает блок.

                                      Существует такое понятие как «точка росы». Точка росы это температура, при которой водяной пар начинает конденсироваться. В строительстве за точку росы принимают расстояние от поверхности стены, где начинает конденсироваться влага. При выпадении конденсата в конструкции стены снижаются его теплотехнические свойства, а при замораживании воды структура материала разрушается. Поэтому в пеноблоке в лучшем случае не должно образовываться конденсата, т.е. температура в блоке даже на наружной поверхности не должна быть ниже температуры точки росы (для внутренней температуры +22 °С и влажности 50% это не ниже 11,1 °С), либо хотя бы эта влага не должна замерзать, т.е. температура не должна быть ниже 0 °С.

                                      Посмотрим на рисунок ниже, как условно узменяется температура в сечении стены:

                                      uteplpenoblock060

                                      В первом случае, мы имеем стены без утепления. Половина стены в данном случае имеет температуру ниже нуля, т.е. при наличии влаги здесь происходит разрушение материала.

                                      Во втором случае утепление происходит изнутри дома, тут ситуация еще хуже — вся толщина блока имеет температуру ниже нуля.

                                      В третьем случае температура замерзания выведена за пределы конструкции, стена не замерзает, и соответственно конструкции не разрушаются.

                                      Утеплитель, установленный снаружи, не разрушается от действия влаги т.к. либо имеет закрытые поры и не содержит воды, как пенопласт, либо имеет податливую структуру и может выдержать небольшие деформации, как минеральная вата.

                                      Температура на поверхности внутри стены вычисляется по формуле:

                                      uteplpenoblock021

                                      где tнар — температура наружного воздуха, в нашем случае мы принимаем температуру наружного воздуха наиболее холодных суток с обеспеченностью 0,92 согласно таблице 3.1 СП 131.13330.2012, для Москвы tнар = -28 °С;

                                      tвнутр — температура внутреннего воздуха, tвнутр =+22 °С;

                                      Rстены — термическое сопротивление стены, можно вычислить по программе Escel, которая приведена в статье Расчёт толщины теплоизоляции, для стены с пеноблоком 300 мм и утеплением 50 мм Rстены = 3,49 (м 2 ∙ °С)/Вт, для 100 мм Rстены = 4,68 (м 2 ∙ °С)/Вт;

                                      αн — коэффициент теплоотдачи наружной поверхности, принимаем αн =23 Вт/(м 2 ∙ °С) (Таблица 6 СП 50.13330.2012);

                                      δi — толщина i-го слоя, в нашем случае толщина минеральной ваты;

                                      λi — коэффициент теплопроводности i-го слоя, для минеральной базальтовой ваты λi =0,042 Вт/(м 2 ∙ °С) (см. характеристики материала при условиях B).

                                      Итак рассчитаем температуру на поверхности блока при утеплении 50 мм мин.ватой и наружной температуре воздуха — 28 °С:

                                      uteplpenoblock030

                                      Т.о. видим, что толщины 50 мм не хватает, чтобы защитить блок даже от промерзания, температура на поверхности ниже нуля, а это значит, что вода на некотором расстоянии от поверхности блока будет замерзать и разрушать материал.

                                      Теперь рассчитаем температуру на поверхности блока при утеплении 100 мм минеральной ватой:

                                      uteplpenoblock040

                                      Даже при утеплении 100 мм мин.ватой температура на поверхности будет — 2 °С, т.е. даже этой толщины не хватает чтобы защитить пеноблок. Пеноблок имеет достаточно низкую теплопроводность, поэтому температура на поверхности достаточно низкая, если бы стена имела большую теплопроводность, то этой толщины хватило бы, чтобы темпретарура на поверности блока была положительной.

                                      Увеличим толщину до 150 мм Rстены = 5,87 (м 2 ∙ °С)/Вт, вычисляем температуру на поверхности блока:

                                      uteplpenoblock050

                                      Температура на поверхности блока положительная, и пусть она ниже точки росы, однако даже если конденсат выпадет, то он не замерзнет, а когда станет тепло конденсат испариться.

                                      Получаем, что чтобы защитить пеноблок должным образом нужно применять утеплитель толщиной не менее 150 мм. Применение наружного утепления позволит существенно увеличить срок службы дома. Хочу отметить, что нельзя утеплять дом изнутри т.к. это наоборот сдвинет температура замерзания воды внутрь. Также не стоит увеличивать толщину пеноблока, т.к. это опять таки сдвинет точку замерзания внутрь дома.

                                      Для несущих стен из материалов с более высоким коэффициентом теплопроводности может хватить и 100 мм утепления, но это нужно считать индивидуально.

                                      Если нет возможности утеплить снаружи, а температура замерзания попадает в конструкцию, то рекомендуется сделать внутреннюю пароизоляцию — это позволит уменьшить количество влаги в конструкции, однако увеличит влажность помещения в доме, и чтобы её снизить необходимо будет сделать приточно-вытяжную вентиляцию.

                                      Для Подмосковья я рекомендую вместо применения блока 375 мм использовать пеноблоки 300 мм плюс утепление 150 мм. Это будет дороже примерно на 190 руб/м² стены если сравнивать со стеной толщиной 375 мм, однако вы получите существенную экономию на отопление и продлите срок службы дома.

                                      Какой лучше купить газобетон?

                                      Газобетон – строительный материал с отличными теплоизоляционными свойствами и небольшим весом. По сравнению с традиционными кирпичом, монолитом и пиломатериалами, дом из газобетона можно строить дешевле. А по скорости – настолько же быстро, как и сруб из бруса. При этом он характеризуется более низкой усадкой и, при соблюдении технологии кладки, отсутствием щелей, трещин, «мостиков холода», не требует систематической обработки антисептиками, не горит, не гниет, не теряет эстетических свойств и не привлекает, в качестве источника пищи, грызунов и насекомых. Впрочем, если Вы решили строить дом из газобетона, то обо всем этом уже наверняка знаете.

                                      Классификация популярных газобетонных блоков

                                      По назначению:

                                      стеновые и перегородочные;

                                      теплоизоляционные и конструкционно-теплоизоляционные.

                                      прямые блоки – экономия на растворе за счет отсутствия впадин и выемок;

                                      прямые блоки с захватами для рук (с карманами) – удобство переноски вручную;

                                      блоки с системой соединения «паз-гребень» и захватами для рук – максимально плотное соединение, экономия на растворе, удобство переноски;

                                      U-блоки – для устройства перемычек, балок, опалубки для заливных конструкций;

                                      радиусные блоки – для устройства круглых элементов фасада.

                                      Ширина 75, 85, 100, 150, 200, 250, 300, 375, 400 мм;

                                      Длина 625, 600 мм;

                                      Высота 250, 300, 400 мм.

                                      По плотности в кг/м3 (от самого теплого к наименее теплому):

                                      D300 – теплопроводность 0,08-0,09 Вт/(м*С) ;

                                      D400 – теплопроводность 0,11-0,12 Вт/(м*С);

                                      D500 – теплопроводность 0,14-0,15 Вт/(м*С);

                                      D600 – теплопроводность 0,18-0,185 Вт/(м*С).

                                      По прочности:

                                      B1,5-B2,0 – для возведения несущих и внутренних стен 1-2 этажных домов с мансардой и без;

                                      B2,5 – для возведения несущих и внутренних стен домов в 2-3 этажа, возможно, с мансардой;

                                      B3,5 – подходит для несущих и внутренних стен домов в 4-5 этажей и выше.

                                      Блоки толщиной 75-200 мм считаются перегородочными, используются, в основном, для зонирования внутреннего пространства домов, а также для утепления стен из других материалов, например, в качестве забутовки кирпичной стены. Ширина 250 мм и выше выбирается, чаще всего, для кладки наружных стен.

                                      Как правильно выбрать газобетон?

                                      Дои 2 этажа из газобетона

                                      Правильность выбора стройматериалов определяется их соответствием тому, что и для чего Вы хотите построить. Если нужен капитальный дом в 2-3 этажа и хотелось бы не тратиться на дополнительное утепление, то нужен широкий блок (375-400 мм) средней плотности D400-D500, либо кладка блоком 200 мм в два ряда.

                                      При необходимости выстроить многоквартирный дом в 3 и более этажей, обычно используют теплоизоляционный блок для заполнения каркасных конструкций, или конструкционно-теплоизоляционные блоки плотностью D500-D600 с максимальной прочностью – для возведения несущих стен. Следует предупредить, что в этом случае, дополнительное утепление понадобится даже при толщине стены в 400 мм, т.к. сопротивление теплопередаче у более плотного газобетона выше, чем у менее плотного.

                                      Газобетонная стена с облицовкой кирпичом

                                      Если нужен 1-этажный дачный дом для проживания с мая по сентябрь, то вполне достаточно купить газоблок плотностью D400 шириной 200-250 мм. В таком доме в теплое время года не будет холодно, дополнительное утепление не нужно. В то же время, его возможно будет приспособить к проживанию круглый год, если дополнительно утеплить и облицевать.

                                      Когда же во главу угла поставлена стоимость, дешевле обойдется стеновой материал из газобетона большей толщины, поскольку чем тоньше блоки, тем толще должны быть слои утеплителя. Как вариант, кладка в 2 и более слоев – что автоматически влечет покупку большего количества газоблоков, примерно на 40-50%. И это не считая оплаты трудочасов каменщику.

                                      А для тех, кто желает сэкономить по-крупному, БлокСПб предлагает выбрать газобетон еще дешевле тут >>

                                      Газоблок + кирпич – третий не лишний?

                                      Повышение доступности жилья — один из двигателей прогресса в стройиндустрии. В условиях конкуренции застройщики стремятся удешевить стоимость строительства за счет использования современных материалов и технических решений. Например, в последние десятилетия в нашей стране приобрели большую популярность двуслойные стены из газобетона и кирпича. Облицовочный кирпич придает таким домам внешнюю респектабельность, а легкий и достаточно теплый газобетон отвечает, в том числе за комфорт. Двуслойные стены дешевле полностью кирпичных, а архитектурный образ здания мало отличается. Но обеспечат ли такие стены необходимый комфорт и долговечность дома? Разбираемся вместе с экспертом – техническим специалистом по коттеджному и малоэтажному строительству Корпорации ТЕХНОНИКОЛЬ Александром Плешкиным.

                                      Прослужит ли дом нескольким поколениям?

                                      Долговечность – один из важных критериев при выборе технологий для строительства дома. В «Инженерно-строительном журнале» №8 (2009 г) приведены результаты испытаний газобетонных стен с кирпичной облицовкой. Выводы ученых удивляют: срок службы такой стены составляет от 60 до 110 и более лет. Испытывались материалы одного качества в условиях одного и того же региона. Как выяснилось, столь заметная разница обусловлена технологией применения материалов: увеличить срок эксплуатации позволяет наличие вентиляционного зазора между слоями стены.

                                      «Вообще отделка газобетона кирпичом без вентиляционного зазора допустима только для неотапливаемых помещений. В противном случае из-за разницы температур теплый и влажный воздух из помещения устремится наружу, пар начнет скапливаться между слоями стены, разрушая и кирпич, и газобетон, — комментирует Александр Плешкин. – Наличие вентилируемого зазора, обеспечивающего циркуляцию воздуха (его вход у основания и выход наверху здания) позволит беспрепятственно выводить водяной пар. Срок службы таких домов заметно выше при наличии слоя теплоизоляции, который выведет точку росы из газобетона и увеличит термическое сопротивление всей конструкции».

                                      Погода в доме

                                      В том, что погода в доме главней всего, мало кто сомневается. Считается, что для теплых регионов стена из газобетонных блоков толщиной 300–400 мм и облицовкой в половину лицевого кирпича укладывается в нормативные требования. Соответственно, в доме должно быть достаточно тепло и уютно. Но по факту зимой жители таких домов очень часто вынуждены использовать всевозможные системы отопления. Особенно в первые годы после постройки, когда дом «сохнет». Учитывая стоимость электроэнергии, для семейного бюджета такой способ согреться может быть накладным. Кроме того, из-за нарушения температурно-влажностного режима дома микроклимат в помещении становится хуже, образовывается сырость и плесень, особенно в углах и на стыках «пол-стена-потолок».

                                      Результаты проводимых Службой Качества ТЕХНОНИКОЛЬ тепловизионных обследований объектов говорят о некоторых проблемах, связанных с эксплуатацией домов, построенных по технологии, которая не предусматривает вентиляционный зазор и слой утепления между газобетоном и кирпичом.

                                      Например, в марте 2016 года проводилась тепловизионная съемка фасада жилого комплекса в Московской области.

                                      Данные по объекту:

                                      Тип объекта – таунхаус на стадии эксплуатации;

                                      Дата сдачи объекта – 30 ноября 2015 г.;

                                      Дата проведение осмотра – 1 марта 2016 г.;

                                      Конструкция фасада – газобетонный блок (400 мм) + облицовочный кирпич (120 мм), утепление отсутствует.

                                      «Влажные пятна на фасаде могут быть следствием двух причин, — комментирует Александр Плешкин. — Возможно, мокрые процессы внутренних отделочных работ производились в холодное время года. В данный период кладка еще не успела высохнуть. Также отсутствуют входные и выходные отверстия для создания движения воздуха в вентилируемой кладке. Паровоздушная смесь, которая проникла в кладку из внутренних помещений, встретилась с отрицательной температурой на улице, в результате чего выпала в виде конденсата — воды. Вторая возможная причина образования локальных пятен — наличие мощных теплопроводных включений, которые и выступили в качестве источника конденсата в большом количестве».

                                      Почему расчеты расходятся с фактами?

                                      При использовании тепловизионной съемки были выявлены тепловые потери в местах примыкания стены к кровле, цокольной части, и по контуру плит перекрытий по всему периметру фасада.

                                      «Это связано с тем, что на стадии проектирования теплотехнический расчет фасада соответствует нормам по тепловой защите зданий. Нюанс в том, что расчеты проводятся по глади фасада, без учета мест сопряжений и примыканий плит перекрытий со стеной, окнами, устройства армапоясов и мауэрлатов и так далее. Также не стоит забывать про учет теплопотерь при укладке блоков – в швах в большинстве случаев используется классический цементно-песчаный раствор, реже — специальный тонклослойный клеевой, но вне зависимости от выбранного типа данный способ соединения блоков создает мосты холода, которые и могут спровоцировать конденсацию паров остаточной строительной влаги. Если еще учитывать теплопотери через неоднородности, то получаем уже критические значения», — объясняет эксперт.

                                      Результаты расчетов с учетом всех теплопроводных включений будут приведены ниже, но то, что они будут отличаться от изначальных расчетов, подтверждается результатами тепловизионной съемки.

                                      11.jpg
                                      Рисунок 2. Тепловизионная съемка 1 этажа
                                      12.jpg
                                      Рисунок 3. Тепловизионная съемка 2 этажа

                                      На фотографиях ниже наглядно демонстрируются теплопроводные включения (так называемые тепловые мосты) через плиты перекрытия, цоколь и сопряжения фасада с крышей, а также нарушения технологии строительства.

                                      13.jpg 14.jpg
                                      Рисунок 4. Тепловые потери

                                      Ситуацию хорошо объясняют результаты испытаний тепловой однородности двуслойных стен, проведенных экспертами из Санкт-Петербурга А. С. Горшковым, П. П. Рымкевичем и Н. И. Ватиным. Они провели расчет приведенного сопротивления теплопередаче наружных стен типового многоквартирного жилого здания с конструктивной монолитно-каркасной схемой и двухслойными стенами из газобетона с наружным облицовочным слоем из кирпича в Санкт-Петербурге. Полученное значение 1,81 м2•°С/Вт не соответствуют не только требуемым 3,08 м2•°C/Вт, но и даже минимально допустимым нормативным требованиям 1,94 м2•°C/Вт. Различия в коэффициентах теплотехнической однородности исследователи объясняют различиями использованных в проекте конструктивных решений, количественного и качественного состава теплопроводных включений с учетом их геометрической формы. То есть учитываются все так называемые мостики холода, которые присутствуют в проекте: вид и материал крепежа, плиты перекрытия, стыки, обрамления и примыкания к стенам и окнам и так далее. Довольно распространен случай, когда теплотехническая неоднородность стеновой конструкции на реальном объекте еще ниже расчетной, потому что зависит от качества монтажа: наличие трещин, разломов, выбоин и иных дефектов изделий из газобетона может приводить к перерасходу строительного раствора, который выступает в качестве дополнительного теплопроводного включения, не учитываемого при расчете.

                                      15.png
                                      Рисунок 5. Конструктивное решение наружной двухслойной стены

                                      В итоге мы получаем, что фактический коэффициент теплотехнической однородности существенно меньше, чем расчетное значение. Разница может составлять до 47%. Приведенное сопротивление теплопередаче подобных конструкций может быть меньше нормативного значения до 70%, что требует либо увеличивать толщину газобетонных блоков в составе двухслойной стеновой конструкции, либо использовать промежуточный слой из теплоизоляционных материалов.

                                      16.png
                                      Рисунок 6. Схемы расчетных фрагментов наружной двухслойной стены

                                      «Результаты испытаний говорят о том, что закладываемый при проектировании коэффициент теплотехнической однородности 0,9 для стен из газобетона и кирпича для многих случаев является завышенным. Кроме того, проектировщики пользуются необоснованными значениями теплопроводности газобетона, — комментирует Александр Плешкин. — По факту такая конструкция не обеспечивает необходимое термическое сопротивление стен. Создать комфортный микроклимат, сократить размеры коммунальных платежей и повысить долговечность стен из газобетона и кирпича можно, благодаря включению теплоизоляции между газобетонным и лицевым (облицовочным) слоями. При выборе теплоизоляционного материала для конструкций такого рода особое внимание необходимо уделять значению сопротивления паропроницанию. Оно должно быть, как минимум на порядок меньше сопротивления паропроницанию несущего слоя наружной стены. Утепление стены из газобетона экономически обосновано и выгодно по сравнению с увеличением толщины газобетонной стены, при увеличении которого дополнительно нагружается фундамент и уменьшается полезная площадь помещений».

                                      Влажность – важно ли это?

                                      Хотелось бы отдельно отметить темы теплопроводности и влажности изделий из газобетона, которые являются сильными абсорбентами влаги, то есть могут впитывать значительное количество воды.

                                      «Их фактическая влажность в начальный период эксплуатации может значительно превышать расчетную, это связано не только с процессом производства, транспортировки и складирования материала, но и с мокрыми процессами, которые происходят в доме во время его стройки – заливка стяжки, выравнивание стен и так далее. В этой связи теплопроводность изделий из газобетона может оказываться выше по сравнению с принятыми в проекте расчетными значениями, т. к. теплопроводность материала зависит от содержания влаги. Сложно поддается прогнозу количество лет через которое дом «выйдет» на проектные показатели. Это будет зависеть от климата, условий эксплуатации помещения и конструктивного решения стены – наличие вентиляционного зазора и правильно подобранных изоляционных слоев с точки зрения паропроницаемости. При грамотно спроектированной и выполненной конструкции выход на рабочий режим такой конструкции не должен превышать одного – двух лет», — комментирует Александр Плешкин.

                                      Следует обращать пристальное внимание на вопрос испытания коэффициентов теплопроводности газобетона, а именно на условия влажности, при которых проводятся испытания.

                                      Показатель теплопроводности определяют по ГОСТ 7076-99 «МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме». В данном документе расчеты проводятся для материала в сухом состоянии, не регламентируется при какой весовой влажности материала необходимо проводить испытания. Некоторые производители газобетона проводят испытания на теплопроводность материала ссылаясь на ГОСТ 31359-2007 «Бетоны ячеистые автоклавного твердения», в котором указаны значения весовой влажности, при которой производятся измерения: для условий «А» весовая влажность составляет 4%, для условий «Б» — 5%.

                                      Согласно СП 23-101-2004 «Проектирование тепловой защиты зданий» Приложение Д (или СП 50.13330.2012 «Тепловая защита зданий», Приложение Т) весовая влажность газобетона значительно превышает значения ГОСТ 31359-2007: для газо- и пенобетона плотности 1200;1000;800 весовая влажность составляет: 15% для условий «А» и 22% для условий «Б».

                                      Расчетный коэффициент теплопроводности газобетона значительно занижен по сравнению с фактическим. Данный факт связан не только с особенностями использования материала в условиях влажности, но и с самой методикой испытаний теплопроводности газобетона — влажность при испытаниях снижена в 3,75 — 4,4 раза.

                                      Такая разница в значениях влажности говорит о том, что после возведения конструкции газобетон на протяжении определенного периода времени достигает нормируемых значений равновесной весовой влажности, которая значительно выше той, при которой проводятся испытания теплопроводности материала.

                                      В результате фактическое значение сопротивления теплопередаче здания не совпадает с расчетным. Данный факт говорит о снижении энергоэффективности здания и увеличении эксплуатационных затрат на отопление и кондиционирование.

                                      «Таким образом, с помощью газобетона и кирпича вполне можно создать респектабельный, теплый и долговечный дом, — резюмирует Александр Плешкин. — Но только при строгом соблюдении технологии проектирования тепловой оболочки здания с учетом всех теплопроводных включений, корректных показателей влажности газобетона, которую он приобретет в процессе эксплуатации, а также при обязательном наличии теплоизоляционного слоя и вентиляционного зазора».

                                      Решение для устройства эксплуатируемого утеплённого чердака мансардного типа система ТН-ШИНГЛАС Мансарда PIR от Корпорации ТЕХНОНИКОЛЬ позволяет увеличить внутреннее пространство и подходит для реализации интерьера с открытой стропильной системой.

                                      С 4 по 6 октября 2017 года в МВЦ «Екатеринбург-Экспо» (Екатеринбург) пройдет международный форум высотного и уникального строительства 100+ Forum Russia. Мероприятие проводится при поддержке Минстроя РФ, правительства Свердловской области, администрации города Екатеринбурга.

                                      голоса
                                      Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector