Srub-stroi58.ru

Сруб Строй
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Временное сопротивление цемента при сжатии

Временное сопротивление цемента при сжатии

Цемент испытывают кроме того на прочность и определяют его временное сопротивление на сжатие и на разрыв. Способы испытаний приведены в конце книги в приложении 3, но здесь мы не будем подробно останавливаться на этих испытаниях, так как они должны производиться в лаборатории.

Мы должны твердо помнить, что марку цемента (т. е. его сорт), определяют по временному сопротивлению на сжатие образцов, приготовленных из этого цемента, и испытанных в возрасте 28 дней. Но так как важно знать, как быстро т’вэр-деет цемент, то испытывают его еще в возрасте 3 или 4 дней по затворении и в возрасте 7 дней. Это позволяет нам, не дожидаясь 28 дней, с некоторым приближением определять с каким цементом мы имеем дело.

Мы уже указывали, что цемент самой слабой марки 200 (это прежняя марка 0) должен иметь временное сопротивление 200 кг/см 2 на 28-й день, на 4-й же день он должен иметь всего 85 кг/см 2 , а на 7-й— 120 кг/см 2 .

Если сравнить указанные ОСТом цифры, то можно заметить, что (временное сопротивление) прочность при сжатии на 7-й день примерно в 1V2 раза выше, чем прочность на 4-й день для нормальных марок, и на 3-й день для цементов повышенных марок. На 28-й день прочность в 1У2 раза выше чем на 7-й. Эти цифры относятся к условиям твердения при нормальной температуре, и мы уже сказали в § 20, что рост прочности ускоряется с повышением температуры. S2

Наш ОСТ требует также, чтобы цемент был испытан на растяжение. Цементы и бетоны, как вообще кое каменные материалы плохо работают на растяжение: временное сопротивление на сжатие в 10— 12. раз Go 1ыпе временного сопротивления на растяжение.

Правила приготовления образцов и их испытаний даны в ОСТе «Испытания цементов» (см. приложение з в конце книги), а требуемые нашим ОСТом величины временного сопротивления на растяжение даны в приложении 2 в ОСТе ‘ портланд-цемент». Мы видим, что ОСТ Ь542 требует временное сопротивление при растяжении в 10—12 раз меньше, чем при сжатии.

Чем больше эта разница, тем материал является более хрупким, и, наоборот, нехрупкие гибкие материалы, как, например, дерево н железо или медь почти одинаково хорошо сопротивляются и сжатию и растяжению.

Для пенобетона с его тонкими стенками ячеек чрезвычайно важна меньшая хрупкость, поэтому желательно, чтобы цемент, из которого он изготовлен, имел о и возможно близкие по величине временные сопротивления сжатию и растяжению. Существуют цементы, у которых временное сопротивление растяжению всего в 7—8 раз меньше, чем сжатию: такие цементы наиболее желательны для пенобетона.

Пенобетон, изготовленный из цементов такого рода, менее подвержен растрескиванию.

Контакты

115419, г. Москва, ул. Шаболовка, д. 34, стр. 3.

Просьба заранее предупредить о приезде, т.к. специалисты распределены по объектам

info@masterbetonov.ru

ООО «Стройсервис» работает на рынке строительного производства c 1992 года.
Основной ценностью для нашей компании являются клиенты, поскольку единственный реальный актив компании — это люди, удовлетворенные нашей работой, которые еще раз захотят воспользоваться нашими услугами. Мы стремимся сделать своих клиентов своими партнерами.

Временное сопротивление цемента при сжатии

Так как бетон представляет собой неоднородный материал, внешняя нагрузка создает в нем сложное напряженное состояние. В бетонном образце, подвергнутом сжатию, напряжения концентрируются на более жестких частицах, обладающих большим модулем упругости, вследствие чего по плоскостям соединения этих частиц возникают усилия, стремящиеся нарушить связь между частицами. В то же время в местах, ослабленных порами и пустотами, происходит концентрация напряжений. Из теории упругости известно, что вокруг отверстий в материале, подвергнутом сжатию, наблюдается концентрадия сжимающих и растягивающих напряжений; последние действуют по площадкам, параллельным сжимающей силе. Поскольку в бетоне много пор и пустот, растягивающие напряжения у одного отверстия или поры накладываются на соседние. В результате в бетонном образце, подвергнутом осевому сжатию, возникают продольные сжимающие и поперечные растягивающие напряжения (вторичное поле напряжений).
Разрушение сжимаемого образца, как показывают рпыты, возникает вследствие разрыва бетона в поперечном направлении. Сначала по всему объему возникают микроскопические трещинки отрыва. С ростом нагрузки трещинки отрыва соединяются, образуя видимые трещины, направленные параллельно или с небольшим наклоном к направлению действия сжимающих сил. Затем трещины раскрываются, что сопровождается кажущимся увеличением объема. Наконец, наступает полное разрушение.
Разрушение сжимаемых образцов из различных материалов, обладающих высокой сплошностью структуры, наблюдается вследствие разрыва в поперечном направлении. В бетонных же образцах это явление развивается еще и под влиянием вторичного поля напряжений. Граница образования структурных микроразрушений бетона под нагрузкой может определяться по результатам ультразвуковых измерений. Скорость ультразвуковых колебаний v, распространяющихся поперек линий действия сжимающих напряжений, уменьшается с развитием микротрещин в бетоне. Сжимающее напряжение в бетоне, при котором начинается образование микротрещин, соответствует началу уменьшения скорости ультразвука на кривой. По значению напряжения судят о прочностных и деформативных свойствах бетона.
Отсутствие закономерности в расположении частиц, составляющих бетон, в расположении и крупности пор приводит к тому, что при испытании образцов, изготовленных из одной и той же бетонной смеси, получают неодинаковые показатели прочности — разброс прочности. Прочность бетона зависит от ряда факторов, основньши из которых являются: 1) технологические факторы, 2) возраст н условия твердения, 3) форма и размеры образца, 4) вид напряженного состояния и длительные процессы. Бетон при разных напряжениях — сжатии, растяжении и срезе — имеет разное временное сопротивление.
Классы и марки бетона. В зависимости от назначения железобетонных конструкций и условий эксплуатации устанавливают показатели качества бетона, основными из которых являются:
класс бетона по прочности на осевое сжатие В; указывается в проекте во всех случаях; класс бетона по прочности на осевое растяжение назначается в тех случаях, когда эта характеристика имеет главенствующее значение и контролируется на производстве;
марка бетона по морозостойкости должна назначаться для конструкций, подвергающихся в увлажненном состоянии действию попеременного замораживания и оттаивания (открытые конструкции, ограждающие конструкции и т. п.);
марка по водонепроницаемости W; назначается для конструкций, к которым предъявляют требования непроницаемости (резервуары, напорные трубы и т. п.);
марка по плотности D; назначается для конструкций, к которым кроме требований прочности предъявляются требования теплоизоляции, и контролируется на производстве.
Заданные класс и марку бетона получают соответствующим подбором состава бетонной смеси с последующим испытанием контрольных образцов. Высокое сопротивление бетона сжатию — наиболее ценное его свойство, широко используемое в железобетонных конструкциях. По этим соображениям основная характеристика — класс бетона по прочности на сжатие указывается во всех случаях.
Классом бетона по прочности на осевое сжатие В (МПа) называется временное сопротивление сжатию бетонных кубов с размером ребра 15 см, испытанных через 28 дней хранения при температуре 20±2°С по ГОСТу с учетом статистической изменчивости прочности. Сроки твердения бетона устанавливают так, чтобы требуемая прочность бетона была достигнута к моменту загружения конструкции проектной нагрузкой. Для монолитных конструкций на обычном портландцементе этот срок, как правило, принимается равным 28 дням. Для элементов сборных конструкций заводского изготовления отпускная прочность бетона может быть ниже его класса; она устанавливается по стандартам и техническим условиям в зависимости от условий транспортирования, монтажа, сроков загружения конструкции и др. Классы бетона по прочности на сжатие для железобетонных конструкций нормами устанавливаются следующие: для тяжелых бетонов В7,5; В10; В12,5; В15; В20; ВЗО; В35; В40; В45; В50; В55; В60; для мелкозернистых бетонов вида А на песке с модулями крупности 2,1 и более — в том же диапазоне до В40 включительно; вида Б с модулем крупности менее 1 — в том же диапазоне до ВЗО включительно; вида В, подвергнутого автоклавной обработке — в том же диапазоне до В60 включительно; для легких бетонов — в том же диапазоне до В40 включительно.
Классы бетона по прочности на осевое растяжение ВД8; В 1,2; В 1,6; В2; В2.4; В2,8; В,3,2 характеризуют прочность бетона на осевое растяжение (МПа) по ГОСТу с учетом статистической изменчивости прочности.
Марки бетона по морозостойкости от F25 до F500 характеризуют число выдерживаемых циклов попеременного замораживания и оттаивания в насыщенном водой состоянии.
Марки бетона по водонепроницаемости от W2 до W12 характеризуют предельное давление воды, при котором еще не наблюдается просачивание ее через испытываемый образец.
Марки бетона по плотности от D800 до D2400 характеризуют среднюю плотность (кг/м3).
Оптимальные класс и марку бетона выбирают на основании технико-экономических соображений в зависимости от типа железобетонной конструкции, ее напряженного состояния, способа изготовления, условий эксплуатации и др. Рекомендуется принимать класс бетона для железобетонных сжатых стержневых элементов не ниже В15. Для конструкций, испытывающих значительные сжимающие усилия (колонн, арок и т.п.), выгодны относительно высокие классы бетона — В20—ВЗО; для предварительно напряженных конструкций в зависимости от вида напрягаемой арматуры целесообразны классы бетона В20—В40; для изгибаемых элементов без предварительного напряжения (плит, балок) применяют класс В15.
Легкие бетоны на пористых заполнителях и цементном вяжущем при одинаковых классах и марках по морозостойкости и водонепроницаемости применяют в сборных и монолитных железобетонных конструкциях наравне с тяжелыми бетонами. Для многих конструкций они весьма эффективны, так как приводят к снижению массы.
Влияние времени и условий твердения на прочность бетона. Прочность бетона нарастает в течение длительного времени, но наиболее интенсивный ее рост наблюдается в начальный период твердения. Прочность бетона, приготовленного на портландцементе, интенсивно нарастает первые 28 суток, а на пуццолановом и шлаковом портландцементе медленнее — первые 90 суток. Но и в последующем при благоприятных условиях твердения — положительной температуре, влажной среде — прочность бетона может нарастать весьма продолжительное время, измеряемое годами. Объясняется это явление длительным процессом окаменения цементного раствора — твердением геля и ростом кристаллов. По данным опытов, прочность бетонных образцов, хранившихся в течение 10 лет, нарастала в условиях влажной среды вдвое, а в условиях сухой среды — в 1,4 раза; в другом случае нарастание прочности прекратилось к концу первого года. Если бетон остается сухим, как это часто бывает при эксплуатации большинства железобетонных конструкций, то по истечении первого года дальнейшего нарастания прочности ожидать уже нельзя.
Процесс твердения бетона значительно ускоряется при повышении температуры и влажности среды. С этой целью железобетонные изделия на заводах подвергают тепловой обработке при температуре до 90 °С и влажности до 100 % или же специальной автоклавной обработке при высоком давлении пара и температуре порядка 170 °С. Эти способы позволяют за сутки получить бетон прочностью

Читайте так же:
Когда снесут цементный элеватор

70% проектной. Твердение бетона при отрицательной температуре резко замедляется или прекращается.
Кубиковая прочность бетона при сжатии. При осевом сжатии кубы разрушаются вследствие вазрыва бетона в поперечном направлении. Наклон трещин разрыва обусловлен силами трения, которые развиваются на контактных поверхностях — между подушками пресса и гранями куба. Силы трения, направленные внутрь, препятствуют свободным поперечным деформациям куба и создают эффект обоймы. Удерживающее влияние сил трения по мере удаления от торцовых граней куба уменьшается, поэтому после разрушения куб приобретает форму усеченных пирамид, сомкнутых малыми основаниями. Если при осевом сжатии куба устранить влияние сил трения смазкой контактных поверхностей, поперечные деформации проявляются свободно, трещины разрыва становятся вертикальными, параллельными действию сжимающей силы, а временное сопротивление уменьшается примерно вдвое. Согласно стандарту, кубы испытывают без смазки контактных поверхностей.
Опытами установлено, что прочность бетона одного и того же состава зависит от размера куба: если временное сопротивление сжатию бетона для базового куба с ребром 15 см равно R, то для куба с ребром 20 см оио уменьшается и равно приблизительно 0,93 R, а для куба с ребром 10 см увеличивается и равно

1,1 R.
Это объясняется изменением эффекта обоймы с изменением размеров куба и расстояния между его торцами. Призменная прочность бетона при сжатии. Железобетонные конструкции по форме отличаются от кубов, поэтому кубиковая прочность бетона не может быть непосредственно использована в расчетах прочности элементов конструкции. Основной характеристикой прочности бетона сжатых элементов является призменная прочность Rb — временное сопротивление осевому сжатию бетонных призм. Опыты на бетонных призмах с размером стороны основания а и высотой h показали, что призменная прочность бетона меньше кубиковой и что она уменьшается с увеличением отношения h/a.
В качестве характеристики прочности бетона сжатой зоны изгибаемых элементов также принимают Rb, при этом вместо действительной криволинейной эпюры напряжений бетона сжатой зоны в предельном состоянии принимают условную прямоугольную эпюру напряжений.
Прочность бетона при растяжении зависит от прочности цементного камня при растяжении и сцепления его с зернами заполнителей. Согласно опытным данным, прочность бетона при растяжении в 10—20 раз меньше, чем при сжатии, причем относительная прочность прн растяжении уменьшается с увеличением класса бетона. В опытах наблюдается еще больший по сравнению со сжатием разброс прочности. Повышение прочности бетона при растяжении может быть достигнуто увеличением расхода цемента, уменьшением W/C, применением щебня с шероховатой поверхностью.
Вследствие неоднородности структуры бетона эта формула не всегда дает правильные значения Rbt. Значение Rbt определяют испытаниями на разрыв образцов в виде восьмерки, на раскалывание образцов в виде цилиндров, на изгиб — бетонных балок .
Прочность бетоиа при срезе и скалывании. В чистом виде явление среза состоит в разделении элемента на две части по сечению, к которому приложены перерезывающие силы. При этом сопротивление срезу зерен крупных заполнителей, работающих как шпонки в плоскости среза, оказывает существенное влияние. При срезе распределение напряжений по площади сечения считается равномерным.
В железобетонных конструкциях чистый срез встречается редко; обычно он сопровождается действием продольных сил. Сопротивление бетона скалыванию возникает при изгибе железобетонных балок до появления в них наклонных трещин. Скалывающие напряжения по высоте сечения изменяются по квадратной параболе. Временное сопротивление скалыванию при изгибе, согласно опытным данным, в 1,5—2 раза больше.
Прочность бетона при длительном действии нагрузки. Согласно опытным данным, при длительном действии нагрузки и высоких напряжениях под влиянием развивающихся значительных неупругих деформаций и структурных изменений бетон разрушается при напряжениях, меньших, чем временное сопротивление осевому сжатию Rb. Если при эксплуатации конструкции в благоприятных для нарастания прочности бетона условиях уровень напряжений постепенно уменьшается, отрицательное влияние фактора длительного загружения может и не проявляться.
Прочность бетона при многократно повторных нагрузках. При действии многократно повторных нагрузок с повторяемостью в несколько миллионов циклов временное сопротивление бетона сжатию под влиянием развития структурных микротрещии уменьшается. Предел прочности бетона при многократно повторных нагрузках или предел выносливости бетона Rr, согласно опытным данным, зависит от числа циклов нагрузки и разгрузки и отношения попеременно возникающих минимальных и максимальных напряжений или асимметрии цикла р. На кривой выносливости по оси абсцисс отложено число циклов п, а по оси ординат — значение изменяющегося периодически предела выносливости бетона Rr. С увеличением числа циклов п снижается Rr; напряжение на горизонтальном участке кривой называют абсолютным пределом выносливости.
Практический предел выносливости Rr зависит от характеристики цикла р почти линейно, его наименьшее значение Rr = 0,5 Rb.
Наименьшее значение предела выносливости, как показывают исследования, связано с границей образования структурных микротрещин. Такая связь между Rr и Rcr позволяет находить предел выносливости по первичному нагружению образца определением границы образования структурных микротрещин ультразвуковой аппаратурой.
Значение Rr необходимо для расчета на выносливость железобетонных конструкций, испытывающих динамические нагрузки, — подкрановых балок, перекрытий некоторых промышленных зданий и т. п.
Динамическая прочность бетона. При динамической нагрузке большой интенсивности, но малой продолжительности, развивающейся вследствие ударных и взрывных воздействий, наблюдается увеличение временного сопротивления бетона — динамическая прочность. Чем меньше время от нагружения бетонного образца заданной динамической нагрузкой (или, что то же самое, чем больше скорость роста напряжений МП а/с), тем больше коэффициент динамической прочности бетона.
Этот крэффициент равен отношению динамического временного сопротивления сжатию Rd к призменной прочности. Например, если время нагружения динамической разрушающей нагрузкой составляет 0,1, то коэффициент ka=l,2. Это явление объясняют энергопоглощающей способностью бетона, работающего в течение короткого промежутка нагружения динамической нагрузкой только упруго.

Читайте так же:
Ведро цемента три ведра песка три ведра щебня

Предел прочности бетона на сжатие

Структура бетона, обусловленная неоднородностью состава и различием способов приготовления, оказывает существенное влияние на все физико-механические свойства.

Прочность бетона зависит от ряда факторов:

 технологические факторы: состав, водоцементное отношение, свойства исходных материалов;

 возраст и условия твердения;

 форма и размеры образца;

 вид напряженного состояния и длительность воздействия.

Бетон имеет разное временное сопротивление при сжатии, растяжении и срезе.

Прочность бетона на осевое сжатие.

Различают кубиковую (R) и призменную (Rb) прочность бетона на осевое сжатие. При осевом сжатии кубы разрушаются вследствие разрыва бетона в поперечном направлении. При этом наблюдается явно выраженный эффект обоймы — в кубе у поверхностей, соприкасающихся с плитами пресса (зоны передачи усилий), возникают силы трения, направленные внутрь куба, которые препятствуют свободным поперечным деформациям. Если этот эффект устранить, то временное сопротивление сжатию куба уменьшится примерно вдвое. Опытами установлено, что прочность бетона также зависит от размера образца. Это объясняется изменением влияния эффекта обоймы на деформации бетона с изменением размеров и формы образца (рис. 4).

Поскольку реальные железобетонные конструкции по форме отличаются от кубов, в расчете их прочности основной характеристикой бетона при сжатии является призменная прочность Rb- временное сопротивление осевому сжатию бетонных призм. Опыты на бетонных призмах со стороной основанияаи высотойhпоказали, что призменная прочность бетона меньше кубиковой и она уменьшается с увеличением отношенияh/a. Влияние сил трения на торцах призмы уменьшается с увеличением ее высоты и при отношенииh/a= 4 значениеRb становится почти стабильным и равным примерно0.75R.

Прочность бетона на осевое растяжение.

Зависит от прочности цементного камня на растяжение и сцепления его с зернами заполнителя. Согласно опытным данным, прочность бетона на растяжение в 10 20 раз меньше, чем при сжатии. Повышение прочности бетона на растяжение может быть достигнуто увеличением расхода цемента, уменьшением W/C, применением щебня с шероховатой поверхностью.

Читайте так же:
Класс цемента для бетона b15

Временное сопротивление бетона осевому растяжению (МПа) можно определить по эмпирической формуле:

Вследствие неоднородности бетона эта формула дает лишь приблизительные значения Rbt, точные значения получают путем испытания на разрыв образцов в виде восьмерки.

Прочность бетона на срез и скалывание.

Срез представляет собой разделение элемента на две части по сечению, к которому приложены перерезывающие силы. При этом основное сопротивление срезу оказывают зерна крупных заполнителей, работающих, как шпонки. Временное сопротивление срезу можно определить по эмпирической формуле Rsh  2Rbt;

Сопротивление бетона скалыванию возникает при изгибе железобетонных балок до появления в них наклонных трещин. Скалывающие напряжения по высоте сечения изменяются по квадратной параболе. Временное сопротивление скалыванию при изгибе, согласно опытным данным, в 1.5 2 раза большеRbt.

Определение прочности бетона на сжатие

Определение прочности бетона на сжатие проводят путем испытаний образцов установленной формы согласно ГОСТ 10180-78, соответствующий международному стандарту ИСО 1920-76. Проектную марку бетона по прочности на сжатие контролируют путем испытания стандартных бетонных образцов: для монолитных конструкций — в возрасте 28 сут, для сборных конструкций — в сроки, установленные для данного вида изделий стандартом или техническими условиями.

Проектную марку бетона монолитных конструкций разрешается устанавливать при специальном обосновании в возрасте 90 или 180 сут в зависимости от сроков загружения, что позволяет экономить цемент.

Рисунок-1.Определение прочности бетона ( восьмерка)

Методы определения прочности бетона на сжатие и растяжение регламентированы ГОСТ 10180 — 78, который соответствует международному стандарту ИСО 1920 — 76 и в котором учтены рекомендации СЭВ по стандартизации. Прочность бетона определяют путем испытания образцов, форма и размеры которых указаны в таблицу-1. Таблица -1. Форма и размеры бетонных образцов

Рисунок-2. Определение прочности бетона: призма и устройство для испытания ее на растяжение при изгибе:

1 — каток; 2 — качающийся цилиндрический шарнир; 3 — шаровой шарнир; 4 — траверса;

Рисунок-3. Схема испытаний на растяжение при раскалывании:

1 — образец (куб или цилиндр); 2 — плита пресса; 3 — полуцилиндр Наименьший размер образца (ребра куба, диаметра цилиндра, стороны поперечного сечения призмы) принимают в зависимости от наибольшей крупности заполнителя в пробе бетонной смеси:

Таблица-2. Наибольший диаметр заполнителя в зависимости от наименьшего размера образца.

Образцы изготовляют сериями.Серия, как правило, состоит из грех образцов. Для изготовления контрольных образцов отбирают пробу бетонной смеси из средней части замеса или порции смеси. Бетонную смесь уплотняют в формах на лабораторной виброплощадке типа 435А (вертикальные колебания частотой 2900± 100 кол ./мин и амплитуда 0,5 ± 0,05 мм). Изготовленные образцы хранят не менее 24 ч в формах, покрытых влажной тканью, на воздухе с температурой 20±2°С, затем распалубленные образцы помещают в камеру «нормального твердения», в которой поддерживается относительная влажность воздуха не ниже 95% и температура 20 ± 2°С.

Читайте так же:
Опилки с цементом пропорции стены

Прочность бетона вычисляют для каждого образца по формулам:

На сжатие R=ℜm(P/F)ℜw;

На осевое растяжение: Rp=ℜm(P/F)ℜw;

На растяжение при раскалывании Rp.p=ℜm(2P/πF)ℜw;

На растяжение при изгибе: Rp.и=ℜm(Pl/ab²)ℜw;

где R-прочность бетона на сжатие; Rp-прочность бетона на осевое растяжение; Rp.p-прочность бетона на растяжение при раскалывании; Rp.и-прочность бетона на растяжение при изгибе; P-разрушающая нагрузка; F-средняя площадь рабочего сечения образца; a,b,l-соответственно ширина и высота призмы и расстояние между опорами при испытании образцов на растяжение при изгибе; ℜм-масштабный коэффициент прочности бетона; ℜw-поправочный коэффициент, учитывающий влажность бетона образца; для всех видов бетона( кроме ячеистого) ℜw=1, для ячеистого бетона ℜw принимают в зависимости от влажности:

Таблица-3. Величина ℜw в зависимости от влажности ячеистых бетонов по массе

Поскольку образцы могут быть разной формы и размера, показатели прочности приводят к кубиковой прочности базового образца размером 15X15X15 см умножением на масштабный коэффициент (таблица-4).

Таблица -4. Минимальные значения масштабного коэффициента

Примечание. Для ячеистого бетона плотностью менее 400 кг/м³ масштабный коэффициент для образцов всех размеров и формы принимают равным 1.

Предел прочности при растяжении возрастает при повышении марки бетона, по прочности при сжатии (рисунок-4), однако увеличение сопротивления растяжению замедляется в области высокопрочных бетонов.

Рисунок-4. Зависимость предела прочности бетона при растяжении от его марки:

1 — осевое растяжение; 2 — растяжение при изгибе Поэтому прочность бетона при растяжении составляет 1/10 — 1/17 предела прочности при сжатии, а предел прочности при изгибе — 1/6 — 1/10.

Контрольные вопросы

1. Чем бетонная смесь отличается от бетона?

2. Какими показателями характеризуют удобоукладываемость бетонной смеси?

3. На какие группы и марки разделяют бетонные смеси по удобоукладываемости?

4. Как определяют подвижность бетонной смеси?

5. Для каких бетонных смесей и как определяют жесткость?

6. Как определяют жесткость бетонной смеси упрощенным способом и как в этом случае соотносится показатель жесткости с показателем, определенным на стандартном приборе?

7. В каких единицах выражают показатели удобоукладываемости бетонной смеси?

Лабораторная работа № 7

Определение свойств тяжелого бетона

Качество тяжелого бетона характеризуют классами и марками по прочности при сжатии и изгибе, марками по морозостойкости и водонепроницаемости. Класс бетона по прочности на сжатие определяют величиной гарантированного предела прочности на сжатие в МПа с обеспеченностью 0,95 образцов бетона базового размера (кубов с ребром 15x15x15 см) в возрасте 28 суток. Бетоны подразделяют на классы:В3,5;В5;В7,5;В10;В12,5;В15;В20;В25;В30;В35;В40;В45;В50;В55;В60,В 65;В 70;В 75;В80.

На производстве контролируют среднюю прочность бетона на сжатие или марку бетона по прочности на сжатие. Соотношение между классами бетона по прочности на сжатие, средней прочностью на сжатие и марками по прочности на сжатие приведены в таблице 3.14.

Таблица 3.14. Классы, марки и средняя прочность бетона на сжатие

Класс бетона по прочности на сжатие

Средняя прочность бетона данного класса, МПа

Ближайшая марка бетона по прочности на сжатие

Для тяжелых бетонов, применяемых в строительстве дорог и аэродромов, устанавливаются классы и марки бетона по прочности при изгибе.

Для бетонов конструкций, подвергающихся в процессе эксплуатации по переменному замораживанию и оттаиванию, назначают следующие марки по морозостойкости: F50;F75;F100;F150;F200;F300;F400;F500;F600;

Для бетонов конструкций, к которым предъявляются требования ограничения проницаемости или повышенной плотности и коррозионной стойкости, назначают марки по водонепроницаемости. Марки тяжелого бетона по водонепроницаемости: W2;W4;W6;W8;W10;W 12;W16;W18;W20.

1. Определение предела прочности тяжелого бетона на сжатие

Предел прочности бетона на сжатие обычно определяют на образцах кубической формы с размерами грани 70, 100, 150, 200, З00 мм; а также на образцах цилиндрической формы диаметром 70, 100, 150, 200 мм и высотой или. Размеры образцов выбирают в зависимости от максимального размера зерен заполнителя. Максимальный размер зерен заполнителя должен быть не более 1/4 размера грани куба или диаметра цилиндра. Образцы испытывают сериями по три образца.

Перед формованием внутреннюю поверхность металлических форм смазывают тонким слоем машинного масла. Уплотнение бетонной смеси при изготовлении образцов осуществляют способом, принятым в технологии производства изделий. При невозможности выполнения этого условия, образцы формуют следующим образом. Укладку бетонной смеси и ее уплотнение производят штыкованием с помощью металлического стержня диаметром 16 мм. Количество штыкований определяется из расчета 10 штыкований на каждые 100 см2площади образца.

При уплотнении бетонной смеси с подвижностью менее 10 см или жесткостью до 11с форму закрепляют на лабораторном вибростоле с помощью металлических зажимов. Форму заполняют бетонной смесью с избытком и включают вибростол. Вибрирование продолжают до тех пор, пока смесь полностью не заполнит форму с образованием на поверхности цементного молока.

При изготовлении образцов из бетонной смеси жесткостью 11 с и более, на формезакрепляют насадку. Форму с насадкой жестко закрепляют на виброплощадке и устанавливают на поверхность смеси пригруз, обеспечивающий давление (40,5) кПа, и вибрируют до прекращения оседания пригруза, плюс дополнительно 5-10 с.

Затем излишек бетонной смеси срезают металлической линейкой, и поверхность образца сглаживают кельмой. При определении пределов прочности на сжатие товарного бетона поверхность образцов закрывают влажной тканью, выдерживают в комнате при температуре воздуха (203)С не менее 24 часов, а затем распалубливают и помещают в камеру нормального твердения. Если предусмотрено тепловлажностное ускоренное твердение бетона, то образцы в формах помещают в пропарочную камеру и подвергают тепловлажностной обработке по заданному режиму. Чаще всего образцы подвергают твердению вместе с изделиями в идентичных условиях.

Читайте так же:
Марки цемента его обозначение

Перед испытанием образцы подвергают визуальному осмотру (дефектные образцы испытаниям не подлежат), взвешивают, определяют среднюю плотность. Среднее значение средней плотности бетона округляют до десяти кг/м3. Испытуемый образец устанавливают на нижнюю плиту гидравлического пресса так, чтобы направление разрушающей силы было параллельно слоям бетонной смеси при ее уплотнении. Нарастание нагрузки на образец должно быть постепенным. Скорость нарастания нагрузки должна быть в пределах (0,60,4) МПа в секунду.

Предел прочности бетона в МПа (кгс/см2) вычисляют по формуле

, (3.9)

где Р– разрушающая сила, Н (кгс);F — площадь поперечного сечения образца, мм2(см2);— масштабный коэффициент.

Значения масштабных коэффициентов выбирают из табл.3.15 в зависимости от размеров испытуемых образцов.

Таблица 3.15. Значения масштабных коэффициентов для приведения прочности тяжелого бетона к прочности бетона в образцах базового размера

Прочность бетона на осевое растяжение

Прочность бетона на растяжение в 15…20 раз меньше, чем при сжатии. Повышение прочности бетона на растяжение может быть достигнуто увеличением расхода цемента, уменьшением В/Ц, применением щебня с шероховатой поверхностью. Временное сопротивление бетона осевому растяжению Rbt определяют испытаниями:

1) на разрыв – образцов в виде восьмерки (рис. 4, а);

2) на раскалывание – образцов в виде цилиндров (рис. 4, б);

3) на изгиб – бетонных балок (рис. 4, в): ,

где χ – учитывает криволинейный характер эпюры напряжений в бетоне растянутой зоны.

Рис. 4. Схемы испытания образцов для определения прочности бетона

при осевом растяжении:а — на разрыв; б – на раскалывание; в – на изгиб.

Прочность бетона на срез и скалывание

Срез – разделение элемента на 2 части по сечению, к которому приложены перерезывающие силы (рис. 5, а). Временное сопротивление бетона на срез: .

Сопротивление бетона скалыванию (рис. 5, б) возникает при изгибе балок до появления в них наклонных трещин: .

Рис. 5. Схемы испытания образцов на срез (а) и скалывание (б).

Классы и марки бетона

Качество конструкционного бетона характеризуется классами и марками в зависимости от назначения железобетонных конструкций и условий эксплуатации. Строительные нормы устанавливают следующие показатели качества бетона:

  • класс бетона по прочности на осевое сжатие B;
  • класс бетона по прочности на осевое растяжение Bt;
  • марка по морозостойкости F;
  • марка по водонепроницаемости W;
  • марка по средней плотности D;
  • марка по самонапряжению Sp.

Классом бетона по прочности на осевое сжатие B (МПа) называется временное сопротивление сжатию бетонных кубов с размерами ребра 150 мм, испытанных в соответствии со стандартом через 28 суток хранения при температуре 20±2 о С с учетом статистической изменчивости прочности (рис. 6).

Рис. 6. Кривые распределения прочности,

как случайной величины:

n и R – соответственно количество кубов, имеющих одинаковую прочность, и величина прочности; 1 – опытные значения n и R; 2 – теоретическая кривая, характеризующая разброс прочности с учетом статистической изменчивости (кривая Гаусса)

Среднее значение временного сопротивления бетона сжатию, установленное при испытании партии стандартных кубов:

где n1, n2, …, nk – число случаев, в которых было установлено временное сопротивление соответственно R1, R2, …, Rk, n – общее число испытаний.

Среднее квадратичное отклонение прочности бетона в партии, характеризующее изменчивость прочности:

Коэффициент вариации прочности бетона в партии:

Наименьшее контролируемое значение – временное сопротивление B – расположено на расстоянии χSm влево от значения Rm, т.е.:

где χ – число, показатель надежности.

Исходя из значения χVm оценивают обеспеченность гарантируемых значений прочности бетона не менее B. В нормах на проектирование установлена обеспеченность (доверительная вероятность) 0,95. Это имеет место при χ=1,64.

Для тяжелых бетонов установлены классы B 7,5 ÷ B 60.

Аналогичным образом определяют класс бетона по прочности на осевое растяжение.

Класс бетона по прочности на осевое растяжение: Bt 0,8 ÷ Bt 3,2

Марка бетона по морозостойкости – характеризуется числом выдерживаемых бетоном циклов попеременных замораживания и оттаивания в насыщенном водой состоянии. После определенного числа циклов производят испытания бетонных кубов на сжатие. Снижение прочности на 15 % при таком количестве циклов определяет марку бетона по морозостойкости. F 50 ÷ F 500.

Марка бетона по водонепроницаемости – характеризуется предельным давлением воды (кг/см 2 ), при котором еще не наблюдается ее просачивание через испытываемый стандартный образец. W 2 ÷ W 12.

Марка бетона по средней плотности – гарантированная собственная масса бетона (кг/м 3 ): тяжелый бетон D 2200 ÷ D 2500.

Марка бетона по самонапряжению — значение предварительного напряжения в бетоне, МПа, создаваемого в результате его расширения при коэффициенте продольного армирования μ = 0,01, и контролируется на образцах-призмах размером 10×10×40см.

Процесс твердения бетона значительно ускоряется при повышении температуры и влажности среды. При благоприятных условиях твердения прочность бетона может нарастать годами. Твердение бетона при отрицательной температуре резко замедляется или прекращается.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector